168
Views
0
CrossRef citations to date
0
Altmetric
Article

Selection of suitable lily cultivars by using needle agroinfiltration for blue flower production

, , , , &
Pages 207-222 | Accepted 26 Jul 2022, Published online: 03 Aug 2022

References

  • Benedito, V. A., Kronenburg-van der, V. B. C. E., van Tuyl, J. M., Angenent, G. C., & Krens, F. A. (2005). Transformation of Lilium longiflorum via particle bombardment and generation of herbicide-resistant plants. Cropp Breeding and Applied Biotechnology, 5(3), 259–264. https://doi.org/10.12702/1984-7033.v05n03a01
  • Brugliera, F., Tao, G. Q., Tems, U., Kalc, G., Mouradova, E., Price, K., Stevenson, K., Nakamura, N., Stacey, I., Katsumoto, Y., Tanaka, Y., & Mason, J. G. (2013). Violet/Blue chrysanthemums-metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant and Cell Physiology, 54(10), 1696–1710. https://doi.org/10.1093/pcp/pct110
  • Burchi, G., Prisa, D., Ballarin, A., & Menesatti, P. (2010). Improvement of flower color by means of leaf treatments in lily. Scientia Horticulturae, 125(3), 456–460. https://doi.org/10.1016/j.scienta.2010.04.028
  • Chen, M., Xu, M., Xiao, Y., Cui, D., Qin, Y., Wu, J., Wang, W., & Wang, G. (2018). Fine mapping identifies smfas encoding an anthocyanidin synthase as a putative candidate gene for flower purple color in Solanum melongena L. International Journal of Molecular Sciences, 19(3), 789. https://doi.org/10.3390/ijms19030789
  • De Hertogh, A. A., Van Scheepen, J., Le Nard, M., Okubo, H., & Kamenetsky, R. (2013). Globalization of the flower bulb industry. Ornamental Geophytes: From basic science to sustainable production (pp. 1–16). Boca Raton: CRC Press. https://doi.org/10.1201/b12881
  • Deng, C., Li, S., Feng, C., Hong, Y., Huang, H., Wang, J., Wang, L., & Dai, S. (2019). Metabolite and gene expression analysis reveal the molecular mechanism for petal colour variation in six Centaurea cyanus cultivars. Plant Physiology and Biochemistry, 142, 22–33. https://doi.org/10.1016/j.plaphy.2019.06.018
  • Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus (Madison), 12(1), 13–15.
  • Fatihah, H. N. N., Moñino López, D., van Arkel, G., Schaart, J. G., Visser, R. G. F., & Krens, F. A. (2019). The ROSEA1 and DELILA transcription factors control anthocyanin biosynthesis in Nicotiana benthamiana and Lilium flowers. Scientia Horticulturae, 243, 327–337. https://doi.org/10.1016/j.scienta.2018.08.042
  • Forkmann, G., & Martens, S. (2001). Metabolic engineering and applications of flavonoids. Current Opinion in Biotechnology, 12(2), 155–160. https://doi.org/10.1016/S0958-1669(00)00192-0
  • Guo, J., Han, W., & Wang, M. H. (2008). Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: A review. African Journal Biotechnol, 7(27) , 4966–4972. http://www.academicjournals.org/AJB
  • Guoa, L., Wang, Y., da Silva, J. A. T., Fan, Y., & Yu, X. (2019). Transcriptome and chemical analysis reveal putative genes involved in flower color change in Paeonia ‘Coral Sunset. Plant Physiology and Biochemistry, 138, 130–139. https://doi.org/10.1016/j.plaphy.2019.02.025
  • Holton, T., & Tanaka, Y., 1994. Transgenic flowering plants. Patent Publication Number WO/94/28140.
  • Holton, T., & Lester, D. R. (1996). Cloning of novel cytochrome P450 gene sequences via polymerase chain reaction amplification. Methods in Enzymology, 272, 275–283. https://doi.org/10.1016/s0076-6879(96)72033-5
  • Hong, Y., Tang, X., Huang, H., Zhang, Y., & Dai, S. (2015). Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genomics, 16(1), 1–16. https://doi.org/10.1186/s12864-015-1428-1
  • Hu, K., He, H., Keting, H., Qiaoyan, X., & Silan, D. (2013). Flower colour modification of chrysanthemum by suppression of F3′H and overexpression of the exogenous Senecio cruentus F3′5′H gene. PLoS One, 8(11), 1–12. https://doi.org/10.1371/journal.pone.0074395
  • Ishii, I., Sakaguchi, K., Fujita, K., Ozeki, Y., & Miyahara, T. (2017). A double knockout mutant of acyl-glucose-dependent anthocyanin glucosyltransferase genes in Delphinium grandiflorum. Journal of Plant Physiology, 216, 74–78. https://doi.org/10.1016/j.jplph.2017.05.009
  • Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901–3907. https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
  • Karlov, G. I., Khrustaleva, L. I., Lim, K. B., & van Tuyl, J. M. (1999). Homoeologous recombination in 2 n -gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome, 42(4), 681–686. https://doi.org/10.1139/gen-42-4-681
  • Katsumoto, Y., Fukuchi-Mizutani, M., Fukui, Y., Brugliera, F., Holton, T. A., Karan, M., Nakamura, N., Yonekura-Sakakibara, K., Togami, J., Pigeaire, A., Tao, G. Q., Nehra, N. S., Lu, C. Y., Dyson, B. K., Tsuda, S., Ashikari, T., Kusumi, T., Mason, J. G., & Tanaka, Y. (2007). Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant and Cell Physiology, 48(11), 1589–1600. https://doi.org/10.1093/pcp/pcm131
  • Li, H., Liu, J., Pei, T., Bai, Z., Han, R., & Liang, Z. (2019). Overexpression of SmANS enhances anthocyanin accumulation and alters phenolic acids content in salvia miltiorrhiza and salvia miltiorrhiza bge f. Alba plantlets. Molecular Science, 20(9), 1–21. https://doi.org/10.3390/ijms20092225
  • Lim, K. B., Barba-Gonzalez, R., Shujun, Z., Ramanna, M. S., & Van Tuyl, J. M. (2008). Interspecific hybridization in lily (Lilium): Taxonomic and commercial aspects of using species hybrids in breeding. In J. A. Teixeira Da Silva (Ed.), Floriculture, ornamental and plant biotechnology (V ed., pp. 146–151). Global Science Books Ltd.
  • Morante-Carriel, J., Sellés-Marchart, S., Martínez-Márquez, A., Martínez-Esteso, M. J., Luque, I., & Bru-Martínez, R. (2014). RNA isolation from loquat and other recalcitrant woody plants with high quality and yield. Analytical Biochemistry, 452, 46–53. https://doi.org/10.1016/j.ab.2014.02.010
  • Nakamura, N., Fukuchi-Mizutani, M., Fukui, Y., Ishiguro, K., Suzuki, K., Suzuki, H., Okazaki, K., Shibata, D., & Tanaka, Y. (2010). Generation of pink flower varieties from blue Torenia hybrida by redirecting the flavonoid biosynthetic pathway from delphinidin to pelargonidin. Plant Biotechnology, 27(5), 375–383. https://doi.org/10.5511/plantbiotechnology.10.0610a
  • Nakano, M., Mii, M., Kobayashi, H., Otani, M., & Yagi, M. (2016). Molecular approaches to flower breeding. Breeding Research, 18(1), 34–40. https://doi.org/10.1270/jsbbr.18.34
  • Naqvi, S., Farré, G., Sanahuja, G., Capell, T., Zhu, C., & Christou, P. (2010). When more is better: Multigene engineering in plants. Trends in Plant Science, 15(1), 48–56. https://doi.org/10.1016/j.tplants.2009.09.010
  • Nishihara, M., & Nakatsuka, T. (2010). Genetic engineering of novel flower colors in floricultural plants: Recent advances via transgenic approaches., in: methods in molecular biology (Clifton, N.J.). In S. M. Jain & S. J. Ochatt (Eds.), Protocols for in vitro propagation of ornamental plants, vol 589. Methods in molecular biology (pp. 325–347). Humana Press. https://doi.org/10.1007/978-1-60327-114-1_29
  • Nitarska, D., Stefanini, C., Haselmair-Gosch, C., Miosic, S., Walliser, B., Mikulic-Petkovsek, M., Regos, I., Slatnar, A., Debener, T., Terefe-Ayana, D., Vilperte, V., Hadersdorfer, J., Stich, K., & Halbwirth, H. (2018). The rare Orange-red colored Euphorbia pulcherrima cultivar “Harvest Orange” shows a nonsense mutation in a flavonoid 3’-hydroxylase allele expressed in the bracts. BMC Plant Biology, 18(1), 1–12. https://doi.org/10.1186/s12870-018-1424-0
  • Noda, N. (2018). Recent advances in the research and development of blue flowers. Breeding Science, 68(1), 1–9. https://doi.org/10.1270/jsbbs.17132
  • Okinaka, Y., Shimada, Y., Nakano-Shimada, R., Ohbayashi, M., Kiyokawa, S., & Kikuchi, Y. (2003). Selective accumulation of delphinidin derivatives in tobacco using a putative Flavonoid 3′,5′-hydroxylase cDNA from Campanula medium. Bioscience, Biotechnology, and Biochemistry, 67(1), 161–165. https://doi.org/10.1271/bbb.67.161
  • Qi, Y., Lou, Q., Quan, Y., Liu, Y., & Wang, Y. (2013). Flower-specific expression of the Phalaenopsis flavonoid 3′, 5′-hydoxylase modifies flower color pigmentation in Petunia and Lilium. Plant Cell, Tissue and Organ Culture (PCTOC), 115(2), 263–273. https://doi.org/10.1007/s11240-013-0359-2
  • Qin, Y., Tao, Y., & Sinica, S. X.-B. (2015). Preliminary studies on the changes of flower color during the flowering period in two tree peony cultivars. ACTA Horticulturae Sinica, 42, 930–938. https://doi.org/10.16420/j.0513-353x.2014-0996
  • Sambrook, J., Fritsch, E., & Maniatis, T. 1968. Extraction, purification, and analysis of messenger RNA from eukaryotic cells, molecular cloning. Molecular cloning: A laboratory manual, 2nd edn. 351–354. Cold Spring Harbor Laboratory Press.
  • Santi, L., Batchelor, L., Huang, Z., Hjelm, B., Kilbourne, J., Arntzen, C. J., Chen, Q., & Mason, H. S. (2008). An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine, 26(15), 1846–1854. https://doi.org/10.1016/j.vaccine.2008.01.053
  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108. https://doi.org/10.1038/nprot.2008.73
  • Shoji, K., Miki, N., Nakajima, N., Monomoi, K., Kato, C., & Yoshida, K. (2007). Perianth bottom-specific blue color development in tulip cv. Murasakizuisho requires ferric ions. Plant and Cell Physiology, 48(2), 243–251. https://doi.org/10.1093/pcp/pcl060
  • Smith, N. A., Singh, S. P., Wang, M.-B., Stoutjesdijk, P. A., Green, A. G., & Waterhouse, P. M. (2000). Gene expression: Total silencing by intron-spliced hairpin RNAs. Nature, 407(6802), 319–320. https://doi.org/10.1038/35030305
  • Sparkes, I. A., Runions, J., Kearns, A., & Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1(4), 2019–2025. https://doi.org/10.1038/nprot.2006.286
  • Suzuki, K., Suzuki, T., Nakatsuka, T., Dohra, H., Yamagishi, M., Matsuyama, K., & Matsuura, H. (2016). RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.). BMC Genomics, 17(1), 1–19. https://doi.org/10.1186/s12864-016-2995-5
  • Tai, T. H., Dahlbeck, D., Clark, E. T., Gajiwala, P., Pasion, R., Whalen, M. C., Stall, R. E., & Staskawicz, B. J. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 14153–14158. https://doi.org/10.1073/pnas.96.24.14153
  • Tanaka, Y., Tsuda, S., & Kusumi, T. (1998). Metabolic engineering to modify flower color. Plant and Cell Physiology, 39(11), 1119–1126. https://doi.org/10.1093/oxfordjournals.pcp.a029312
  • Tanaka, Y. (2006). Flower colour and cytochromes P450. Phytochemistry Reviews, 5(2–3), 283–291. https://doi.org/10.1007/s11101-006-9003-7
  • Tanaka, Y., Brugliera, F., & Chandler, S. (2009). Recent progress of flower colour modification by biotechnology. International Journal of Molecular Sciences, 10(12), 5350–5369. https://doi.org/10.3390/ijms10125350
  • Tanaka, Y., Brugliera, F., Kalc, G., Senior, M., Dyson, B., Nakamura, N., Katsumoto, Y., & Chandler, S. (2010). Flower color modification by engineering of the Flavonoid biosynthetic pathway: practical perspectives. Bioscience, Biotechnology, and Biochemistry, 74(9), 1007282070. https://doi.org/10.1271/BBB.100358
  • Tanaka, Y., & Brugliera, F. (2013). Flower colour and cytochromes P450. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1612), 20120432. https://doi.org/10.1098/rstb.2012.0432
  • Tanaka, Y., Nakamura, N., Kobayashi, H., & Okuhara, H., 2013. Method for cultivating lilies containing delphinin in the petals thereof. Eur. Pat. EP2617283A1.
  • To, K.-Y., & Wang, C.-K. (2006). . Global Science Books UK 1 , , UK.300–310.
  • Tripathi, S. K., Singh, A. P., Sane, A. P., & Nath, P. (2009). Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose. Journal of Experimental Botany, 60(7), 2035–2044. https://doi.org/10.1093/jxb/erp076
  • Waterhouse, P. M., Graham, M. W., & Wang, M.-B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences of the United States of America, 95(23), 13959–13964. https://doi.org/10.1073/pnas.95.23.13959
  • Wessinger, C. A., & Rausher, M. D. (2014). Predictability and irreversibility of genetic changes associated with flower color evolution in penstemon barbatus. Evolution, 68 (4), 1058–1070. N. Y https://doi.org/10.1111/evo.12340
  • Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. American Society of Plant Biologists, 126(2), 485–493. https://doi.org/10.1104/pp.126.2.485
  • Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 3(2), 259–273. https://doi.org/10.1111/j.1467-7652.2005.00123.x
  • Yamagishi, M., & Akagi, K. (2013). Morphology and heredity of tepal spots in Asiatic and Oriental hybrid lilies (Lilium spp.). Euphytica, 194(3), 325–334. https://doi.org/10.1007/s10681-013-0937-8
  • Yasmin, A., & Debener, T. (2010). Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell, Tissue and Organ Culture (PCTOC), 102(2), 245–250. https://doi.org/10.1007/s11240-010-9728-2
  • Yoshida, K., Toyama-Kato, Y., Kameda, K., & Kondo, T. (2003). Sepal color variation of hydrangea macrophylla and vacuolar pH measured with a proton-selective microelectrode. Plant and Cell Physiology, 44(3), 262–268. https://doi.org/10.1093/pcp/pcg033
  • Yoshida, K., Mori, M., & Kondo, T. (2009). Blue flower color development by anthocyanins: From chemical structure to cell physiology. Natural Product Reports, 26(7), 884–915. https://doi.org/10.1039/B800165K
  • Yuki, S., Araki, T., & Suzuki, S. (2013). US8440879B2 - Flavonoid-3′,5′-hydroxylase gene of commelina communis. US Pathology, 8(440), 879. https://patents.google.com/patent/US8440879B2/en
  • Zeinipour, M., Azadi, P., Majd, A., Kermani Jafarkhani, M., Irian, S., Hosseini, S. M., & Mii, M. (2018). Agroinfiltration: A rapid and reliable method to select suitable rose cultivars for blue flower production. Physiology and Molecular Biology of Plants, 24(3), 503–511. https://doi.org/10.1007/s12298-018-0516-5
  • Zhao, D., & Tao, J. (2015). Recent advances on the development and regulation of flower color in ornamental plants. Frontiers of Plant Science, 27, 261. https://doi.org/10.3389/FPLS.2015.00261/FULL
  • Zottini, M., Barizza, E., Costa, A., Formentin, E., Ruberti, C., Carimi, F., & Lo Schiavo, F. (2008). Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Reports, 27(5), 845–853. https://doi.org/10.1007/s00299-008-0510-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.