163
Views
0
CrossRef citations to date
0
Altmetric
Article

Brassinosteroids or proline can alleviate yield inhibition under salt stress via modulating physio-biochemical activities and antioxidant systems in snap bean

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 526-539 | Accepted 14 Nov 2022, Published online: 30 Nov 2022

References

  • Abdelhamid, M. T., Rady, M. M., Osman, A. S., & Abdalla, M. A. (2013). Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. plants. Journal of Horticultural Science and Biotechnology, 88(4), 439–446. https://doi.org/10.1080/14620316.2013.11512989
  • Abd El-Samad, H., Shaddad, M., & Barakat, N. (2011). Improvement of plants salt tolerance by exogenous application of amino acids. Journal of Medicinal Plants Research, 5(24), 5692–5699.
  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018
  • Adda, A., Regagba, Z., Latigui, A., & Merah, O. (2014). Effect of salt stress on α-amylase activity, sugars mobilization and osmotic potential of Phaseolus vulgaris L. seeds var.‘cocorose’and’djadida’during germination. The Journal of Biological Sciences, 14(5), 370–375. https://doi.org/10.3923/jbs.2014.370.375
  • Ahmad, P., Nabi, G., & Ashraf, M. (2011). Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South African Journal of Botany, 77(1), 36–44. https://doi.org/10.1016/j.sajb.2010.05.003
  • Alam, P., Albalawi, T. H., Altalayan, F. H., Bakht, M. A., Ahanger, M. A., Raja, V., Ashraf, M., & Ahmad, P. (2019). 24-Epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system. Biomolecules, 9(11), 640. https://doi.org/10.3390/biom9110640
  • Alharbi, B. M., Elhakem, A. H., Alnusairi, G. S., Soliman, M. H., Hakeem, K. R., Hasan, M. M., & Abdelhamid, M. T. (2021). Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system. Plant, soil and environment, 67(4), 208–220. https://doi.org/10.17221/659/2020-PSE
  • Alhasnawi, A. N. (2019). Role of proline in plant stress tolerance: A mini review. Research on Crops, 20(1), 223–229.
  • Ali, Q., Ashraf, M., Shahbaz, M., & Humera, H. (2008). Ameliorating effect of foliar applied proline on nutrient uptake in water stressed maize (Zea mays L.) plants. Pakistan Journal of Botany, 40(1), 211–219.
  • Ali, F., Bano, A., & Fazal, A. (2017). Recent methods of drought stress tolerance in plants. Plant Growth Regulation, 82(3), 363–375. https://doi.org/10.1007/s10725-017-0267-2
  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Awad, N., Turky, A., Abdelhamid, M., & Attia, M. (2012). Ameliorate of environmental salt stress on the growth of Zea mays L. plants by exopolysaccharides producing bacteria. Journal of Applied Sciences Research, 8(4), 2033–2044.
  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47(1), 1–8. https://doi.org/10.1016/j.plaphy.2008.10.002
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276–287. https://doi.org/10.1016/0003-2697(71)90370-8
  • Bohnert, H. J., & Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 14(3), 89–97. https://doi.org/10.1016/0167-7799(96)80929-2
  • Butt, M., Ayyub, C., Amjad, M., & Ahmad, R. (2016). Proline application enhances growth of chilli by improving physiological and biochemical attributes under salt stress. Pakistan Journal of Agricultural Sciences, 53(1), 43–49. https://doi.org/10.21162/PAKJAS/16.4623
  • Çoban, Ö., & Baydar, N. G. (2016). Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Industrial Crops and Products, 86, 251–258. https://doi.org/10.1016/j.indcrop.2016.03.049
  • Dawood, M. G., Abdelhamid, M. T., & Schmidhalter, U. (2014). Potassium fertiliser enhances the salt-tolerance of common bean (Phaseolus vulgaris L.). Journal of Horticultural Science and Biotechnology, 89(2), 185–192. https://doi.org/10.1080/14620316.2014.11513067
  • Dawood, M., El-Metwally, I., & Abdelhamid, M. (2016). Physiological response of lupine and associated weeds grown at salt-affected soil to α‑tocopherol and hoeing treatments. Gesunde Pflanzen, 68(2), 117–127. https://doi.org/10.1007/s10343-016-0367-3
  • Dawood, M., Taie, H., Nassar, R., Abdelhamid, M., & Schmidhalter, U. (2014). The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South African Journal of Botany, 93, 54–63. https://doi.org/10.1016/j.sajb.2014.03.002
  • Dong, Y., Wang, W., Hu, G., Chen, W., Zhuge, Y., Wang, Z., & He, M. R. (2017). Role of exogenous 24-epibrassinolide in enhancing the salt tolerance of wheat seedlings. Journal of Soil Science and Plant Nutrition, 17(3), 554–569. https://doi.org/10.4067/S0718-95162017000300001
  • Ekinci, M., Yildirim, E., Dursun, A., & Turan, M. (2012). Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. HortScience, 47(5), 631–636. https://doi.org/10.21273/HORTSCI.47.5.631
  • El Moukhtari, A., Cabassa-Hourton, C., Farissi, M., & Savouré, A. (2020). How does proline treatment promote salt stress tolerance during crop plant development? Frontiers in plant science, 11, 1127. https://doi.org/10.3389/fpls.2020.01127
  • El-Tohamy, W., El-Abagy, H., Badr, M., Ghoname, A., & Abou-Hussein, S. (2012). Improvement of productivity and quality of cape gooseberry (Physalis peruviana L.) by foliar application of some chemical substances. Journal of Applied Sciences Research 8(4), 2366–2370.
  • Fariduddin, Q., Yusuf, M., Ahmad, I., & Ahmad, A. (2014). Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum, 58(1), 9–17. https://doi.org/10.1007/s10535-013-0374-5
  • Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S. S., & Siddique, K. (2017). Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, 203(2), 81–102. https://doi.org/10.1111/jac.12169
  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. John Wiley & Sons.
  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 1–18. Article ID 701596, 18 pages. https://doi.org/10.1155/2014/701596
  • Hammerschmidt, R., Nuckles, E., & Kuć, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 20(1), 73–82. https://doi.org/10.1016/0048-4059(82)90025-X
  • Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling & Behavior, 7(11), 1456–1466. https://doi.org/10.4161/psb.21949
  • Hegazi, A. M., El-Shraiy, A. M., & Ghoname, A. (2015). Alleviation of salt stress adverse effect and enhancing phenolic anti-oxidant content of eggplant by seaweed extract. Gesunde Pflanzen, 67(1), 21–31. https://doi.org/10.1007/s10343-014-0333-x
  • Hegazi, A. M., El-Shraiy, A. M., & Ghoname, A. (2017). Mitigation of salt stress negative effects on sweet pepper using arbuscular mycorrhizal fungi (AMF), Bacillus megaterium and brassinosteroids (BRs). Gesunde Pflanzen, 69(2), 91–102. https://doi.org/10.1007/s10343-017-0393-9
  • Heidari, M., Mousavinik, S. M., & Golpayegani, A. (2011). Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. Journal of Agricultural and Biological Science, 6(5), 6–11.
  • Hellal, F., Abdelhamid, M., Abo-BAsha, D. M., & Zewainy, R. (2012). Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vica faba L.). Journal of Applied Sciences Research, 8(8), 4428–4433.
  • Hoque, M. A., Banu, M. N. A., Okuma, E., Amako, K., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2007). Exogenous proline and glycinebetaine increase NaCl-induced ascorbate–glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. Journal of Plant Physiology, 164(11), 1457–1468. https://doi.org/10.1016/j.jplph.2006.10.004
  • Hossain, M. A., Bhattacharjee, S., Armin, S. -M., Qian, P., Xin, W., Li, H. -Y., Burritt, D. J., Fujita, M., & Tran, L.S. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Frontiers in plant science, 6, 420. https://doi.org/10.3389/fpls.2015.00420
  • Ibrahimova, U., Kumari, P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z., Zivcak, M., Tahjib-Ul-Arif, M., Hussain, S., Abdelhamid, M., Hajihashemi, S., Yang, X., & Brestic, M. (2021). Progress in understanding salt stress response in plants using biotechnological tools. Journal of Biotechnology, 329, 180–191. https://doi.org/10.1016/j.jbiotec.2021.02.007
  • Jha, U. C., Bohra, A., Jha, R., & Parida, S. K. (2019). Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant cell reports, 38(3), 255–277. https://doi.org/10.1007/s00299-019-02374-5
  • Kahlaoui, B., Hachicha, M., Rejeb, S., Rejeb, M., Hanchi, B., & Misle, E. (2014). Response of two tomato cultivars to field-applied proline under irrigation with saline water: Growth, chlorophyll fluorescence and nutritional aspects. Photosynthetica, 52(3), 421–429. https://doi.org/10.1007/s11099-014-0053-6
  • Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P., & Chen, J. -T. (2020). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences, 21(1), 148. https://doi.org/10.3390/ijms21010148
  • Karlidag, H., Yildirim, E., & Turan, M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria ananassa). Scientia horticulturae, 130(1), 133–140. https://doi.org/10.1016/j.scienta.2011.06.025
  • Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160(5), 485–492. https://doi.org/10.1078/0176-1617-00865
  • Kumar, V., Shriram, V., Hossain, M. A., & Kishor, P. (2015). Engineering proline metabolism for enhanced plant salt stress tolerance. In S. H. Wani & M. A. Hossain (Eds.), Managing Salt Tolerance in Plants (pp. 352–372). CRC Press.
  • Lalotra, S., Hemantaranjan, A., Kumar, S., & Kant, R. (2017). Effect of brassinosteroid (Brassinolide) on seedling traits, morphology and metabolism in mungbean under salinity stress. Annual Research & Review in Biology, 12(4), 1–8. https://doi.org/10.9734/ARRB/2017/32237
  • Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Ed.), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (pp. 278–292). Palo Alto, CA: Stanford University Press.
  • Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19(9), 998–1011. https://doi.org/10.1089/ars.2012.5074
  • Mohamed, H. I., El-Sayed, A. A., Rady, M. M., Caruso, G., Sekara, A., & Abdelhamid, M. T. (2021). Coupling effects of phosphorus fertilization source and rate on growth and ion accumulation of common bean under salinity stress. PeerJ, 9, e11463. https://doi.org/10.7717/peerj.11463
  • Montavon, P., Kukic, K. R., & Bortlik, K. (2007). A simple method to measure effective catalase activities: Optimization, validation, and application in green coffee. Analytical Biochemistry, 360(2), 207–215. https://doi.org/10.1016/j.ab.2006.10.035
  • Nadeem, M., Li, J., Yahya, M., Wang, M., Ali, A., Cheng, A., Wang, X., & Ma, C. (2019). Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. International Journal of Molecular Sciences, 20(4), 799. https://doi.org/10.3390/ijms20040799
  • Nassar, R., Kamel, H. A., Ghoniem, A. E., Alarcón, J. J., Sekara, A., Ulrichs, C., & Abdelhamid, M. T. (2020). Physiological and anatomical mechanisms in wheat to cope with salt stress induced by seawater. Plants, 9(2), 237. https://doi.org/10.3390/plants9020237
  • Nolan, T. M., Vukašinović, N., Liu, D., Russinova, E., & Yin, Y. (2020). Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. The Plant Cell, 32(2), 295–318. https://doi.org/10.1105/tpc.19.00335
  • Nounjan, N., Nghia, P. T., & Theerakulpisut, P. (2012). Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 169(6), 596–604. https://doi.org/10.1016/j.jplph.2012.01.004
  • Oklestkova, J., Rárová, L., Kvasnica, M., & Strnad, M. (2015). Brassinosteroids: Synthesis and biological activities. Phytochemistry Reviews, 14(6), 1053–1072. https://doi.org/10.1007/s11101-015-9446-9
  • Orabi, S. A., & Abdelhamid, M. T. (2016). Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. Journal of the Saudi Society of Agricultural Sciences, 15(2), 145–154. https://doi.org/10.1016/j.jssas.2014.09.001
  • Ouda, S. A., Noreldin, T., Mounzer, O. H., & Abdelhamid, M. T. (2015). CropSyst model for wheat irrigation water management with fresh and poor quality water. Journal of Water and Land Development, 27(X–XII1), 41–50. https://doi.org/10.1515/jwld-2015-0023
  • Pan, J., Zhang, M., Kong, X., Xing, X., Liu, Y., Zhou, Y., Liu, Y., Sun, L., & Li, D. (2012). ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta, 235(4), 661–676. https://doi.org/10.1007/s00425-011-1510-0
  • Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants-a review. Plant, soil and environment, 54(3), 89–99. https://doi.org/10.17221/2774-PSE
  • Pessarakli, M. (1999). Response of green beans (Phaseolus vulgaris L.) to salt stress. In M. Pessarakli (Ed.), Handbook of plant and crop stress (2nd ed., pp. 827–842). New York, USA: Marcel Dekker, Inc.
  • Premachandra, G. S., Saneoka, H., & Ogata, S. (1990). Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. The Journal of Agricultural Science, 115(1), 63–66. https://doi.org/10.1017/S0021859600073925
  • Rady, M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia horticulturae, 129(2), 232–237. https://doi.org/10.1016/j.scienta.2011.03.035
  • Rady, M. M., Mounzer, O., Alarcón, J., Abdelhamid, M., & Howladar, S. (2016). Growth, heavy metal status and yield of salt-stressed wheat (Triticum aestivum L.) plants as affected by the integrated application of bio-, organic and inorganic nitrogen-fertilizers. Journal of Applied Botany and Food Quality, 89, 21–28. https://doi.org/10.5073/JABFQ.2016.089.003
  • Rady, M. M., Sadak, M. S., El Lethy, S. R., Abd Elhamid, E. M., & Abdelhamid, M. T. (2015). Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. Journal of Horticultural Science and Biotechnology, 90(2), 195–202. https://doi.org/10.1080/14620316.2015.11513172
  • Rady, M. M., Semida, W. M., Hemida, K. A., & Abdelhamid, M. T. (2016). The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. International Journal of Recycling of Organic Waste in Agriculture, 5(4), 311–321. https://doi.org/10.1007/s40093-016-0141-7
  • Rady, M. M., Talaat, N. B., Abdelhamid, M. T., Shawky, B. T., & Desoky, E.S. (2019). Maize (Zea mays L.) grains extract mitigates the deleterious effects of salt stress on common bean (Phaseolus vulgaris L.) growth and physiology. Journal of Horticultural Science and Biotechnology, 94(6), 777–789. https://doi.org/10.1080/14620316.2019.1626773
  • Rajewska, I., Talarek, M., & Bajguz, A. (2016). Brassinosteroids and response of plants to heavy metals action. Frontiers in Plant Science, 7, 629. https://doi.org/10.3389/fpls.2016.00629
  • Rehman, H., Alharby, H. F., Bamagoos, A. A., Abdelhamid, M. T., & Rady, M. M. (2021). Sequenced application of glutathione as an antioxidant with an organic biostimulant improves physiological and metabolic adaptation to salinity in wheat. Plant Physiology and Biochemistry, 158, 43–52. https://doi.org/10.1016/j.plaphy.2020.11.041
  • Sarmoum, R., Haid, S., Biche, M., Djazouli, Z., Zebib, B., & Merah, O. (2019). Effect of salinity and water stress on the essential oil components of rosemary (Rosmarinus officinalis L.). Agronomy, 9(5), 214. https://doi.org/10.3390/agronomy9050214
  • Shahid, M., Pervez, M., Balal, R., Mattson, N., Rashid, A., Ahmad, R., Ayyub, C., & Abbas, T. (2011). Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Australian Journal of Crop Science, 5(5), 500–510.
  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
  • Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R., & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7), 285. https://doi.org/10.3390/biom9070285
  • Sheldon, A. R., Dalal, R. C., Kirchhof, G., Kopittke, P. M., & Menzies, N. W. (2017). The effect of salinity on plant-available water. Plant and Soil, 418(1), 477–491. https://doi.org/10.1007/s11104-017-3309-7
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Siddiqui, H., Hayat, S., & Bajguz, A. (2018). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40(3), 1–15. https://doi.org/10.1007/s11738-018-2639-2
  • Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management, 38(1), 39–67. https://doi.org/10.1111/sum.12772
  • Sobahan, M. A., Akter, N., Ohno, M., Okuma, E., Hirai, Y., Mori, I. C., Nakamura, Y., & Murata, Y. (2012). Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars. Bioscience, Biotechnology, and Biochemistry, 76(8), 1568–1570. https://doi.org/10.1271/bbb.120233
  • Soualem, S., Adda, A., Belkhodja, M., & Merah, O. (2014). Calcium supply reduced effect of salinity on growth in the Mediterranean shrub (Atriplex halimus L.). Life Science Journal, 11(2), 278–284.
  • Stirk, W. A., Bálint, P., Tarkowská, D., Strnad, M., van Staden, J., & Ördög, V. (2018). Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress. European Journal of Phycology, 53(3), 273–279. https://doi.org/10.1080/09670262.2018.1441447
  • Szepesi, Á. (2005). Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt-and osmotic stress. Acta Biologica Szegediensis, 49(1–2), 123–125.
  • Tang, J., Han, Z., & Chai, J. (2016). Q&A: What are brassinosteroids and how do they act in plants? BMC biology, 14(1), 1–5. https://doi.org/10.1186/s12915-016-0340-8
  • Valentovic, P., Luxova, M., Kolarovic, L., & Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil and Environment, 52(4), 186–191. https://doi.org/10.17221/3364-PSE
  • Van Hoorn, J., Katerji, N., Hamdy, A., & Mastrorilli, M. (2001). Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agricultural Water Management, 51(2), 87–98. https://doi.org/10.1016/S0378-3774(01)00114-7
  • Vicente, O., Al Hassan, M., & Boscaiu, M. (2016). Contribution of osmolyte accumulation to abiotic stress tolerance in wild plants adapted to different stressful environments. Osmolytes and plants acclimation to changing environment: In N. Iqbal. (Ed.), Emerging omics technologies (pp. 13–25). Springer (India) Pvt. Ltd.
  • Xu, J., Li, H. -D., Chen, L. -Q., Wang, Y., Liu, L. -L., He, L., & Wu, W. -H. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 12(7), 1347–1360. https://doi.org/10.1016/j.cell.2006.06.011
  • Yousry, M. M., El-Mesirry, D., & Shama, M. (2015). Effect of proline on resistance of potato crop (Solanum tuberosum L.) for the negative effects of water irrigation salinity. Current Science International, 4(1), 172–177.
  • Youssef, S. M., Abd Elhady, S. A., Aref, R. M., & Riad, G. S. (2018). Salicylic acid attenuates the adverse effects of salinity on growth and yield and enhances peroxidase isozymes expression more competently than proline and glycine betaine in cucumber plants. Gesunde Pflanzen, 70(2), 75–90. https://doi.org/10.1007/s10343-017-0413-9
  • Yuan, M., Ruark, M. D., & Bland, W. L. (2017). A simple model for snap bean (Phaseolus vulgaris L.) development, growth and yield in response to nitrogen. Field Crops Research, 211, 125–136. https://doi.org/10.1016/j.fcr.2017.06.014
  • Zörb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21, 31–38. https://doi.org/10.1111/plb.12884

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.