154
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Fruit rot of Capsicum spp.: implications and management strategies

ORCID Icon, , , &
Pages 715-731 | Received 24 Oct 2022, Accepted 12 Jun 2023, Published online: 12 Jul 2023

References

  • Abd Elsalam, K. A., & Alghuthaymi, M. A. (2015). Nanobiofungicides: Are they the next- generation of fungicides? Journal of Nanotechnology and Materials Science, 2(1), 1–3. https://doi.org/10.15436/2377-1372.15.013
  • Agrios, G. N. (2005). Introduction (3rd ed.). Elsevier. https://doi.org/10.1016/B978-0-08-047378-9.50007-5
  • Ajith, P. S., Lakshmesha, K. K., Murthy, S. M., & Lakshmidevi, N. (2012). Botanicals for control of anthracnose of bell peppers. Journal of Plant Diseases and Protection, 4(1), 13–19.
  • Alves, K. F., Laranjeira, D., Câmara, M. P., Câmara, C. A., & Michereff, S. J. (2015). Efficacy of plant extracts for anthracnose control in bell pepper fruits under controlled conditions. Horticultura Brasileira, 33(3), 332–338. https://doi.org/10.1590/S0102-053620150000300009
  • Anand, T., & Bhaskaran, R. (2009). Exploitation of plant products and bio-agents for eco-friendly management of chilli fruit rot disease. Journal of Plant Protection Research, 49(2), 195–203. https://doi.org/10.2478/v10045-009-0029-x
  • Anand, T., Chandrasekaran, A., Kuttalam, S., Senthilraja, G., & Samiyappan, R. (2010). Integrated control of fruit rot and powdery mildew of chilli using the biocontrol agent Pseudomonas fluorescens and a chemical fungicide. Biological Control, 52(1), 1–7. https://doi.org/10.1016/j.biocontrol.2009.09.010
  • Anand, A., Gupta, H. B., & Chourasia, H. K. (2020). Management of Anthracnose of red chilli caused by Colletotrichum capsici. Annals of Plant and Soil Research, 22, 390–395. https://doi.org/10.47815/apsr.2020.10010
  • Angadi, H.D., Naik, M.K., Patil, M. G., & Patil, R.G. (2003). Evaluation of chilli genotypes against anthracnose disease. Vegetable Science, 30 (2), 164–165.
  • Aslam, S., Tahir, A., Aslam, M. F., Alam, M. W., Shedayi, A. A., & Sadia, S. (2017). Recent advances in molecular techniques for the identification of phytopathogenic fungi – a mini review. Journal of Plant Interactions, 12(1), 493–504. https://doi.org/10.1080/17429145.2017.1397205
  • Bal, S. S., & Behera, B. (2012). Antagonistic effects of different bioagents against Colletotrichum capsici causing anthracnose and fruit rot or chilli. Journal of Plant Protection and Environment, 9(2), 60–62.
  • Birari, B. P., Gade, R. M., & Choudhari, R. K. (2018). Antifungal efficacy of plant extracts, biocontrol agents against Colletotrichum capsici causing anthracnose of chilli. Journal of Pharmacognosy & Phytochemistry, 7 (5) , 1368–1373.
  • Borrelli, V. M. G., Brambilla, V., Rogowsky, P., Marocco, A., & Lanubile, A. (2018). The enhancement of plant disease resistance using CRISPER/Cas9 technology. Frontiers in Plant Sciences, 9, 1–15. https://doi.org/10.3389/fpls.2018.01245
  • Cheng, Y., Tang, X., Gao, C., Li, Z., Chen, J., Guo, L., Wang, T., & Xu, J. (2020). Molecular diagnostics and pathogenesis of fungal pathogens on bast fiber crops. Pathogens, 9(3), 223. https://doi.org/10.3390/pathogens9030223
  • Chowdhury, M. F. N., Yusop, M. R., Ismail, S. I., Ramlee, S. I., Oladosu, Y., Hosen, M., & Miah, G. (2020). Development of anthracnose disease resistance and heat tolerancechili through conventional breeding and molecular approaches: A review. Biocell, 44(3), 269–278. https://doi.org/10.32604/biocell.2020.09627
  • Cueva, F. D., Mendoza, J. S., & Balendres, M. A. (2018). A new Colletotrichum species causing anthracnose of chilli in the Philippines and its pathogenicity to chilli cultivar Django. Crop Protection, 112, 264–268. https://doi.org/10.1016/j.cropro.2018.06.011
  • Damm, U., Woudenberg, J. H. C., Cannon, P. F., & Crous, P. W. (2009). Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity, 39, 45–87.
  • De Silva, D. D., Ades, P. K., Crous, P. W., & Taylor, P. W. J. (2016). Colletotrichum species associated with chili anthracnose in Australia. Plant Pathology, 66(2), 254–267. https://doi.org/10.1111/ppa.12572
  • De Silva, D. D., Groenewald, J. Z., Crous, P. W., Ades, P. K., Nasruddin, A., Mongkolporn, O., & Taylor, P. W. J. (2019). Identification, prevalence and pathogenicity of Colletotrichum species causing anthracnose of Capsicum annuum in Asia. IMA Fungus, 10(1), 8. https://doi.org/10.1186/s43008-019-0001-y
  • Dhiman, S., Kumari, N., Badiyal, A., Sharma, V., & Sharma, P. N. (2022). Development and validation of a direct PCR based assay for the detection of Colletotrichum species on chili seeds. Seed Science and Technology, 50(1), 149–161. https://doi.org/10.15258/sst.2022.50.1.12
  • El-Sappah, A. H., Yan, K., Huang, Q., Islam, M. M., Li, Q., Wang, Y., Khan, M. S., Zhao, X., Mir, R. R., Li, J., El-Tarabily, K. A., & Abbas, M. (2021). Comprehensive mechanism of gene silencing and its role in plant growth and development. Frontiers in Plant Sciences, 12, 1–22. https://doi.org/10.3389/fpls.2021.705249
  • Farr, D. F., Rossman, A. Y., Palm, M. E. & McCray, E. B. (2016). Fungal Databases, Systematic Botany and Mycology Laboratory, ARS, USDA. Available online at:http://nt.ars-grin.gov/fungaldatabases.
  • Flor, H. H. (1971). Current status for the gene-for-gene concept. Annual Review in Phytopathology, 9(1), 275–296. https://doi.org/10.1146/annurev.py.09.090171.001423
  • Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856–8874. https://doi.org/10.3390/molecules20058856
  • Gao, Y. Y., He, L. F., Li, B. X., Mu, W., Lin, J., & Liu, F. (2017). Sensitivity of Colletotrichum acutatum to six fungicides and reduction in incidence and severity of chili anthracnose using pyraclostrobin. Australasian Plant Pathology, 46(6), 521–528. https://doi.org/10.1007/s13313-017-0518-8
  • Garg, R., Kumar, S., Kumar, R., Loganatha, M., Saha, S., Kumar, S., Rai, A. B., & Roy, B. K. (2013). Novel source of resistance and differential reactions on chilli fruit infected by Colletotrichum capsici. Australasian Plant Pathology, 42(2), 227–233. https://doi.org/10.1007/s13313-012-0194-7
  • Ghorbani, A., Hadifar, S., Salari, R., Izadpanah, K., Burmistrz, M., Afsharifar, A., Eskandari, M. H., Niazi, A., Denes, C. E., & Neely, G. G. (2021). A short overview of CRISPR-Cas technology and its application in viral disease control. Transgenic Research, 30(3), 221–238. https://doi.org/10.1007/s11248-021-00247-w
  • Gurjar, M., Ali, S., Akhtar, M., & Singh, K. (2012). Efficacy of plant extracts in plant disease management. Agricultural Sciences, 3(03), 425–433. https://doi.org/10.4236/as.2012.33050
  • Halsted, B. D. (1890). A new anthracnose of pepper. Bulletin of the Torrey Botanical Club, 18(1), 14–15. https://doi.org/10.2307/2477422
  • Hariharan, G., & Prasannath, K. (2021). Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Frontiers in Cellular and Infection Microbiology, 10, 1–14. https://doi.org/10.3389/fcimb.2020.600234
  • Hasyim, A., Setiawati, W., & Sutarva, R. (2014). Screening for resistance to anthracnose caused by Colletotrichum acutatum in chili pepper (Capsicum annuum L.) in Kediri, East Java. Advances in Agriculture and Botanics, 6(2), 104–118. http://www.aab.bioflux.com.ro/docs/20
  • He, D.-C., He, M.-H., Amalin, D. M., Liu, W., Alvindia, D. G., & Zhan, J. (2021). Biological control of plant diseases: An evolutionary and eco-economic consideration. Pathogens, 10(10), 1311. https://doi.org/10.3390/pathogens10101311
  • Hermosa, R., Viterbo, A., Chet, I., & Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology (Reading, England), 158(1), 17–25. https://doi.org/10.1099/mic.0.052274-0
  • Iliger, K. S., Sofi, T. A., Bhat, N. A., Ahanger, F. A., Sekhar, J. C., Elhendi, A. Z., Asma, A., & Khan, A. F. (2021). Copper nanoparticles: Green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi Journal of Biological Sciences, 28(2), 1477–1486. https://doi.org/10.1016/j.sjbs.2020.12.003
  • Imjit, N., Rattanakreetakul, C. and Pongpisutta, R. (2012). Polymerase chain reaction-based detection of Chilli anthracnose disease. Proceedings of the International Conference on Postharvest Pest and Disease Management in Exporting Horticultural Crops, Bangkok, Thailand (pp. 199–206). https://doi.org/10.17660/ActaHortic.2013.973.27
  • Intanoo, W. & Chamswarng, C. (2007). Effect of antagonistic bacterial formulations for control of anthracnose on chilli fruits. Proceeding of the 8th National Plant Protection Conference In Naresuan University, Phisanlok, Thailand, pp. 309–322.
  • Jaihan, P., Sangdee, K., & Sangdee, A. (2016). Selection of entomopathogenic fungus for biological control of chili anthracnose disease caused by Colletotrichum spp. European Journal of Plant Pathology, 146, 551–564. https://doi.org/10.1007/s10658-016-0941-7
  • Johnny, L., Yusuf, U. K., & Nulit, R. (2011). Antifungal activity of selected plant leaves crude extracts against a pepper anthracnose fungus, Colletotrichum capsici (Sydow) butler and bisby (Ascomycota: Phyllachorales). African Journal of Biotechnology, 10(20), 4157–4165. https://doi.org/10.5897/AJB10.2085
  • Kandan, A., Akhtar, J., Singh, B., Pal, D., Chand, D., & Agarwal, P. C. (2016). Application of loop-mediated isothermal amplification (LAMP) assay for rapid and sensitive detection of fungal pathogen, Colletotrichum capsici in Capsicum annuum. Journal of Environmental Biology, 37, 1355–1360.
  • Kantar, M. B., Anderson, J. E., Lucht, S. A., Mercer, K., Bernau, V., Case, K. A., Le, N. C., Frederiksen, M. K., DeKeyser, H. C., Wong, Z.-Z., Hastings, J. C., & Baumler, D. J. (2016). Vitamin variation in Capsicum Spp. Provides opportunities to improve nutritional value of human diets. PLoS ONE, 11(8), 11. https://doi.org/10.1371/journal.pone.0161464
  • Katoch, A., Sharma, P., & Sharma, P. N. (2016). Identification of Colletotrichum spp. associated with fruit rot of Capsicum annuum in North Western Himalayan region of India using fungal DNA barcode markers. Journal of Plant Biochemistry and Biotechnology, 26(2), 216–223. https://doi.org/10.1007/s13562-016-0384-4
  • Kaur, N., Singh, D. J., & Singh, K. D. (2011). Physiological and biochemical traits analysis of Capsicum annuum L. germplasm for resistance to Colletotrichum capsici. Journal of Cell and Plant Sciences, 2, 12–21.
  • Kelly, W. G., & Aramayo, R. (2007). Meiotic silencing and the epigenetics of sex. Chromosome Research, 15(5), 633–651. https://doi.org/10.1007/s10577-007-1143-0
  • Kethom, W., & Mongkolporn, O. (2021). New QTLs for anthracnose resistance identified in Capsicum baccatum ‘PBC80’-derived recombinant inbred lines. Euphytica, 217(6), 1–28. https://doi.org/10.1007/s10681-021-02866
  • Kim, S., Kim, K. T., Kim, D. H., Yang, E. Y., Cho, M. C., Jamal, A., Chae, Y., Pae, D. H., Oh, D. G., & Hwang, J. K. (2010). Identification of quantitative trait loci associated with anthracnose resistance in chili pepper (Capsicum spp.). Korean Journal of Horticultural Science and Technology, 28(6), 1014–1024.
  • Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y.-K., Lee, Y.-S., Jeong, D. H., & Cho, M.-H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101. https://doi.org/10.1016/j.nano.2006.12.001
  • Kim, S. H., Yoon, J. B., Do, J. W., & Park, H. G. (2008). A major recessive gene associated with anthracnose resistance to Colletotrichum capsici in chili pepper (Capsicum annuum L.). Breeding Science, 58(2), 137–141. https://doi.org/10.1270/jsbbs.58.137
  • Kiran, R., Akhtar, J., Kumar, P., & Shekhar, M. (2020). Anthracnose of Chilli: Status. Diagnosis and Management, 10.5772/intechopen.87455. https://doi.org/10.5772/intechopen.93614
  • Kraft, K. H., Brown, C. H., Nabhan, G. P., Luedeling, E., Ruiz, J. D. J. L., d’Eeckenbrugge, G. C., Hijmans, R. J. & Gepts, P. (2014). Multiple lines of evidence for the origin of domesticated chili pepper, apsicum annuum, in Mexico. Proceedings of the National Academy of Sciences, 111(17), 6165–6170. https://doi.org/10.1073/pnas.1308933111
  • Krithiga, N., Jayachitra, A., & Rajalakshmi, A. (2013). Synthesis, characterization and analysis of the effect of copper oxide nanoparticles in biological systems. Indian Journal of Natural Sciences, 1, 6–15.
  • Kumari, S., & Khan, S. (2017). Synthesis and applications of nanofungicides: A next-generation fungicide. Fungal nanotechnology: Applications in agriculture, industry and medicine. In R. Prasad (Ed.), Fungal Nanotechnology, Fungal Biology (pp. 103–118). Springer International Publishing AG.
  • Lamsal, K., Kim, S. W., Jung, J. H., Kim, Y. S., Kim, K. S., & Lee, Y. S. (2011). Application of silver nanoparticles for the control of colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology, 39(3), 194–199. https://doi.org/10.5941/MYCO.2011.39.3.194
  • Lata, H., Sharma, A., Chadha, S., Kaur, M., & Kumar, P. (2022). RNA interference (RNAi) mechanism and application in vegetable crops. Journal of Horticultural Science & Biotechnology, 2(2), 160–170. https://doi.org/10.1080/14620316.2021.1988729
  • Lee, J., Hong, J., & Do, J. W. (2010). Identification of QTLs for resistance to anthracnose to two Colletotrichum species in pepper. Journal of Crop Science and Biotechnology, 13(4), 227–233. https://doi.org/10.1007/s12892-010-0081-0
  • Le, D. T., & Vu, N. T. (2017). Progress of loop-mediated isothermal amplification technique in molecular diagnosis of plant diseases. Applied Biological Chemistry, 60(2), 169–180. https://doi.org/10.1007/s13765-017-0267-y
  • Liu, F., Tang, G., Zheng, X., Li, Y., Sun, X., Qi, X., Zhou, Y., Xu, J., Chen, H., Chang, X., Zhang, S., & Gong, G. (2016). Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China. Scientific Reports, 6(1), 1–17. https://doi.org/10.1038/srep32761
  • Machenahalli, S., Nargund, V. B., Byadgi, A. S., & Hegde, Y. (2016). Integrated management of die-back and fruit rot of chilli (Capsicum annuum L.). Vegetos- an International Journal of Plant Research, 29(3), 3. https://doi.org/10.5958/2229-4473.2016.00087.2
  • Mahasuk, P., Chinthaisong, J., & Mongkolporn, O. (2013). Differential resistances to anthracnose in Capsicum baccatum as responding to two Colletotrichum pathotypes and inoculation methods. Breeding Science, 63(3), 333–338. https://doi.org/10.1270/jsbbs.63.333
  • Mahasuk, P., Khumpeng, N., Wasee, S., Taylor, P. W. J., & Mongkolporn, O. (2009). Inheritance of resistance to anthracnose (Colletotrichum capsici) at seedling and fruiting stages in chili pepper (Capsicum spp.). Plant Breeding, 128(6), 701–706. https://doi.org/10.1111/j.1439-0523.2008.01615.x
  • Mahasuk, P., Taylor, P. W. J., & Mongkolporn, O. (2009). Identification of two new genes conferring resistance to Colletotrichum acutatum in Capsicum baccatum. Phytopathology®, 99(9), 1100–1104. https://doi.org/10.1094/PHYTO-99-9-1100
  • Mahto, B. K., Singh, A., Pareek, M., Rajam, M. V., Ray, S. D., & Reddy, P. M. (2020). Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against anthracnose disease in chilli and tomato. Plant Molecular Biology, 104(4–5), 381–395. https://doi.org/10.1007/s11103-020-01046-3
  • Manda, R. R., Pavithra, G., Addanki, V. A., & Srivastava, S. (2020). Anthracnose of Capsicum annuum L. (chilli). International Journal of Current Microbiology & Applied Sciences, 9(11), 749–756. https://doi.org/10.20546/ijcmas.2020.911.090
  • Manzur, J. P., Fita, A., Prohens, J., Burruezo, A. R., & Niedz, R. P. (2015). Successful wide hybridization and introgression breeding in a diverse set of common peppers (Capsicum annuum) using different cultivated Ají (C. baccatum) accessions as donor parents. PLoS One, 10(12), 1–18. https://doi.org/10.1371/journal.pone.0144142
  • Martins, K. C., Pereira, N. S., Souza, S. A. M., Rodrigues, R., & Junior, A. T. A. (2015). Crossability and evaluation of incompatibility barriers in crosses between Capsicum species. Crop Breeding and Applied Biotechnology, 15(3), 139–145. https://doi.org/10.1590/1984-70332015v15n3a25
  • Ma, L., Zhang, M., Bhandari, B., & Ga, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science and Technology, 64, 23–38. https://doi.org/10.1016/j.tifs.2017.03.005
  • Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Asfaliza, R., & Latif, M. A. (2013). Blast resistance in rice: A review of conventional breeding to molecular approaches. Molecular Biological Reports, 40(3), 2369–2388. https://doi.org/10.1007/s11033-012-2318-0
  • Mishra, R., Mohanty, J. N., Mahanty, B., & Joshi, R. K. (2021). A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.). Planta. 254, 1–17. https://doi.org/10.1007/s00425-021-03660-x
  • Mishra, R., Rout, E. & Joshi, R. K. (2018). Identification of resistant sources against anthracnose disease caused by Colletotrichum truncatum and Colletotrichum gloeosporioides in Capsicum annuum L.In: Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 517–524. https://doi.org/10.1007/s40011-018-0965-1.
  • Mishra, R., Rout, E., Mohanty, J. N., & Joshi, R. K. (2019). Sequence-tagged site-based diagnostic markers linked to a novel anthracnose resistance gene RCt1 in chili pepper (Capsicum annuum L.). 3 Biotech, 9(1), 9. https://doi.org/10.1007/s13205-018-1552-0
  • Mongkolporn, O., Montri, P., Supakaew, T., & Taylor, P. W. J. (2010). Differential reactions on mature green and ripe chili fruit infected by three Colletotrichum spp. Plant Diseases, 94(3), 306–310. https://doi.org/10.1094/PDIS-94-3-0306
  • Mongkolporn, O., & Taylor, P. W. J. (2011). Capsicum. In C. Kole, Ed. Wild crop relatives: Genomic and breeding resources (Vol. 5). Springer Berlin Heidelberg. (pp. 43–57). https://doi.org/10.1007/978-3-642-20450-0_4
  • Mongkolporn, O., & Taylor, P. W. J. (2018). Chili anthracnose: Colletotrichum taxonomy and pathogenicity. Plant Pathology, 67(6), 1255–1263. https://doi.org/10.1111/ppa.12850
  • Montri, P., Taylor, P. W., & Mongkolporn, O. (2009). Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Diseases, 93(1), 17–20. https://doi.org/10.1094/PDIS-93-1-0017
  • Nanda, C., Mohan, R. A., Ramesh, S., Hittalmani, S., & Prathibha, V. H. (2016). Tagging SSR markers associated with genomic regions controlling anthracnose resistance in chilli (Capsicum baccatum L.). Vegetos- an International Journal of Plant Research, 29(3), 130. https://doi.org/10.5958/2229-4473.2016.00079.3
  • Ngullie, M., Daiho, L., & Upadhyay, D. N. (2010). Biological management of fruit rot in the world’s hottest chilli (Capsicum chinense Jacq.). Journal of Plant Protection Research, 50, 269–273. https://doi.org/10.2478/v10045-010-0047-8
  • Nishanthi, P., Gobika, R., Charumathi, M., Suji, H. A., & Raj, T. S. (2020). Management of Colletotrichum capsici (SYD.) Butler and bisby causing fruit rot of chilli using fermented leaf extracts. Plant Archives, 20(1), 2509–2514.
  • Noor, N. M., & Zakaria, L. (2018). Identification and characterization of Colletotrichum spp. associated with chili anthracnose in peninsular Malaysia. European Journal of Plant Pathology, 151(4), 961–973. https://doi.org/10.1007/s10658-018-1431-x
  • Nuraini, M. N., & Latiffah, Z. (2019). Efficacy of selected fungicides against mycelial growth of Colletotrichum spp. causing anthracnose of chilli. Plant Pathology and Quarantine, 9(1), 43–51. https://doi.org/10.5943/ppq/9/1/5
  • Oo, M. M., & Oh, S. K. (2016). Chilli anthracnose (Colletotrichum spp.) disease and its management approach. Korean Journal of Agricultural Science, 43(2), 153–162. https://doi.org/10.7744/kjoas.20160018
  • Osman, A. A., Suwannarat, S., Rijiravanich, P., & Surareungchai, W. (2020). Identification and detection of chili anthracnose using three new species-specific PCR primers. European Journal of Plant Pathology, 158(2), 571–582. https://doi.org/10.1007/s10658-020-02103-9
  • Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712–1720. https://doi.org/10.1128/AEM.02218-06
  • Panno, S., Matić, S., Tiberini, A., Caruso, A. G., Bella, P., Torta, L., Stassi, R., & Davino, S. (2020). Loop mediated isothermal amplification: Principles and applications in plant virology. Plants, 9(4), 461. https://doi.org/10.3390/plants9040461
  • Park, K. S., Kim, S. H., Park, H. G., & Yoon, J. B. (2009). Capsicum germplasm resistance to pepper anthracnose differentially interacts with Colletotrichum isolates. Horticulture, Environment, and Biotechnology, 50(1), 17–23 http://www.horticulture.or.kr/eng.
  • Pavithra, S., Akila, R., Rajinimala, N., GangaiSelvi, R., & Kannan, R. (2019). Plant extraction mediated mitigation of chilli fruit rot caused by Colletotrichum spp. Journal of Pharmacognosy & Phytochemistry, 8(4), 2879–2883.
  • Pereira, M. J. Z., Massola, J. N. S., Sussel, A. A. B., Sala, F. C., Costa, C. P., & Boiteux, L. S. (2011). Reação de acessos de Capsicum e de progênies de cruzamentos interespecíficos a isolados de Colletotrichum acutatum. Horticultura Brasileira, 29(4), 569–576. https://doi.org/10.1590/S0102-05362011000400021.0
  • Qin, C., Yu, C., Shen, Y., Fang, X., Chen, L. & Min, J. (2014). Whole-genome sequencing of cultivated and wild pe0ppers provides insights into Capsicum domestication and specialization. Proceedings of the National Academy of Sciences. 111(14), 5135–5140. https://doi.org/10.1073/pnas.1400975111
  • Raghunandan, B. L., Patel, M. V., Patel, N. M., & Mehta, D. M. (2019). Bio-efficacy of different biological control agents for the management of chilli fruit rot/anthracnose disease. Journal of Biological control, 33(2), 163–168. https://doi.org/10.18311/jbc/2019/22716
  • Rahman, M. S., Jahan, K., I00slam, R., Sabuz, A. A., & Akanda, A. M. (2019). In-vitro evaluation of some plant extracts and fungicides ag0ainst Colletotrichum capsici causing anthracnose of chilli. Bangladesh Journal of Plant Pathology, 35(1&2), 1–8.
  • Ramdial, H.,& Rampersad, S. N. (2015). Characterization of Colletotrichum spp. causing anthracnose of bell pepper (Capsicum annuum L.) in Trinidad. Phytoparasitica 43, 37–49. https://doi.org/10.1007/s12600-014-0428-z
  • Ranathunge, N. P., Mongkolporn, O., Ford, R., & Taylor, P. W. J. (2012). Colletotrichum truncatum pathosystem on Capsicum spp: Infection, colonization and defense mechanisms. Australasian Journal of Plant Pathology, 41(5), 463–473. https://doi.org/10.1007/s13313-012-0156-0
  • Rashid, M. M., Amin, A. R., & Rahman, F. (2015). Eco-friendly management of chilli anthracnose (Colletotrichum capsici). International Journal of Plant Pathology, 6(1), 1–11. https://doi.org/10.3923/ijpp.2015.1.11
  • Reddy, M. K., Srivastava, A., Kumar, S., Kumar, R., Chawda, N., & Ebert, A. W. (2014). Chilli (Capsicum annuum L.) breeding in India: An overview. SABRAO Journal of Breeding and Genetics, 46(2), 160–173 http://www.sabrao.org/journals/decemb.
  • Ridzuan, R., Rafii, M. Y., Ismail, S. I., Yusoff, M. M., Miah, G., & Usman, M. (2018). Breeding for anthracnose disease resistance in Chili: Progress and prospects. International Journal of Molecular Sciences, 19(10), 1–21. https://doi.org/10.3390/ijms19103122
  • Ro, N. Y., Sebastin, R., Hur, O. S., Cho, G. T., Geum, B., Lee, Y. J., & Kang, B. C. (2021). Evaluation of anthracnose resistance in pepper (Capsicum spp.) genetic resources. Horticulturae, 7(11), 460. https://doi.org/10.3390/horticulturae7110460
  • Sandani, H. B. P., Ranathunge, N. P., Lakshman, P. L. N., & Weerakoon, W. M. W. (2019). Biocontrol potential of five Burkholderia and Pseudomonas strains against Colletotrichum truncatum infecting chilli pepper. Biocontrol Science and Technology, 29(8), 727–745. https://doi.org/10.1080/09583157.2019.1597331
  • Saxena, A., Raghuwanshi, R., Gupta, V. K., & Singh, H. B. (2016). Chilli anthracnose: The epidemiology and management. Frontiers in Microbiology, 7, 1–18. https://doi.org/10.3389/fmicb.2016.01527
  • Sharma, P., & Sharma, S. (2016). Paradigm shift in plant disease diagnostics: A journey from conventional diagnostics to nano-diagnostics. Current Trends in Plant Disease Diagnostics and Management Practices, 237–264. https://doi.org/10.1007/978-3-319-27312-9_11
  • Sharma, G., & Shenoy, B. D. (2014). Colletotrichum fructicola and C. siamense are involved in chilli anthracnose in India. Archives of Phytopathology and Plant Protection, 47(10), 1179–1194. https://doi.org/10.1080/03235408.2013.833749
  • Shi, N. N., Ruan, H. C., Jie, Y. L., Chen, F. R., & Du, Y. X. (2021). Characterization, fungicide sensitivity and efficacy of Colletotrichum spp. from chili in Fujian, China. Crop Proection, 143, 105572. https://doi.org/10.1016/j.cropro.2021.105572
  • Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48(1), 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450
  • Shreya, Pandey, A. K., & Bhandari, H. R. (2018). Gene silencing: The mechanism to down regulate the target gene. International Journal of Bio-Resource & Stress Management, 9(6), 682–690. https://doi.org/10.23910/IJBSM/2018.9.6.1895
  • Shweta, S. S., Chadha, A., Sharma, S., & Guleria, V. (2021). Nanotechnology: A cutting-edge technology in vegetable production. The Journal, 96(6), 682–695. https://doi.org/10.1080/14620316.2021.1902864
  • Silva, S. A. M., Rodrigues, R., Goncalves, L. S. A., Sudre, C. P., Bento, C. S., Carmo, M. G. F., & Medeiros, A. M. (2014). Resistance in Capsicum spp. to anthracnose affected by different stages of fruit development during pre- and post-harvest. Tropical Plant Pathology, 39(4), 335–341. https://doi.org/10.1590/S1982-56762014000400009
  • Smith, S. H. (2015). In the shadow of a pepper-centric historiography: Understanding the global diffusion of capsicums in the sixteenth and seventeenth centuries. Journal of Ethnopharmacology, 167, 64–77. https://doi.org/10.1016/j.jep.2014.10.048
  • Souza, L. C. S., Assis, L. A. G., Catarino, A. M., & Hanada, R. E. (2019). Screening of chilli pepper genotypes against anthracnose (Colletotrichum brevisporum). Emirates Journal of Food and Agriculture, 31, 919–929. https://doi.org/10.9755/ejfa.2019.v31.i12.2039
  • Srinivasan, M., Kothandaraman, S. V., Vaikuntavasan, P., & Rethinasamy, V. (2014). Development of conventional and real-time PCR protocols for specific and sensitive detection of Colletotrichum capsiciinchilli (Capsicum annuum L.). Phytoparasitica, 42(4), 437–444. https://doi.org/10.1007/s12600-013-0380-3
  • Stephen, A., Samuel, A., & Haroutounian, S. A. (2022). Neem: A novel biocide for pest and disease control of plants. Journal of Chemistry, 2022, 1–12. https://doi.org/10.1155/2022/6778554
  • Subhankari, I., & Nayak, P. (2013). Antimicrobial activity of copper nanoparticles synthesised by ginger (Zingiber officinale) extract. World Journal of Nano Science and Technology, 2(1), 10–13.
  • Sun, C., Mao, S. L., Zhang, Z. H., Palloix, A., Wang, L. H., & Zhang, B. X. (2015). Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Scientia Horticulturae, 181, 81–88. https://doi.org/10.1016/j.scienta.2014.10.033
  • Suwor, P., Thummabenjapone, P., Sanitchon, J., Kumar, S., & Techawongstien, S. (2017). Phenotypic and genotypic responses of chili (Capsicum annuum L.) progressive lines with different resistant genes against anthracnose pathogen (Colletotrichum spp.). European Journal of Plant Pathology, 143(4), 725–736. https://doi.org/10.1007/s10658-015-0723-7
  • Thakur, H., Sharma, A., Sharma, P., & Rana, R. S. (2020). An insight into the problem of bacterial wilt in Capsicum spp. with special reference to India. Crop Protection, 140, 105420. https://doi.org/10.1016/j.cropro.2020.105420
  • Than, P. P., Prihasturi, H., Phoulivong, S., Taylor, P. W. J., & Hyde, D. (2008). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University Science Abbreviation, 9(10), 764–778. https://doi.org/10.1631/jzus.B0860007
  • Tode, H. J. (1790). Fungi MecklenburgensesSelecti. Fasc. 1. Nova Fungorum Genera Complectens. https://doi.org/10.5962/bhl.title.148599
  • Torres-Calzada, C., Tapia-Tussell, R., Quijano-Ramayo, A., Martin-Mex, R., Rojas-Herrera, R., & Higuera-Ciapara, I. (2011). A species-specific polymerase chain reaction assay for rapid and sensitive detection of Colletotrichum capsici. Molecular Biotechnology, 49(1), 48–55. https://doi.org/10.1007/s12033-011-9377-7
  • Unver, T., & Budak, H. (2009). Virus-induced gene silencing, a post transcriptional gene silencing method. International Journal of Plant Genome, 2009, 1–8. https://doi.org/10.1155/2009/198680
  • Villafana, R. T., Ramdass, A. C., & Rampersad, S. N. (2019). Development of a new methodology for the detection of Colletotrichum truncatum and Fusarium sp. in bell pepper seed. Phytoparasitica, 47(4), 543–555. https://doi.org/10.1007/s12600-019-00751-0
  • Voorrips, R. E., Finkers, R., Sanjaya, L., & Groenwold, R. (2004). QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annum and C. chinense. Theoretical and Applied Genetics, 109(6), 1275–1282. https://doi.org/10.1007/s00122-004-1738-1
  • Warin, I., Chaiyawat, S., Chiradej, C., Montree, I., Sorwaporn, K., & Kan, C. (2009). Bioactive compound of antifungal metabolite from Trichoderma harzianummutant strain for the control of anthracnose of chili (Capsicum annuum L.). Philippines Agricultural Scientist, 92(4), 392–397.
  • Yadav, M., Dubey, M. K., & Upadhyay, R. S. (2021). Systemic resistance in Chilli Pepper against Anthracnose (Caused by Colletotrichum truncatum) Induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis. Journal of Fungi, 7(4), 307. https://doi.org/10.3390/jof7040307
  • Zebec, Z., Zink, I. A., Kerou, M., & Schleper, C. (2016). Efficient CRISPR-mediated post-transcriptional gene silencing in a hyperthermophilic archae on using multiplexed crRNA expression. G3: Genes, Genome and Genetics, 6(10), 3161–3168. https://doi.org/10.1534/g3.116.032482
  • Zhao, Y., Liu, Y., Zhang, Z., Cao, Y., Yu, H., Ma, W., Zhang, B., Wang, R., Gao, J., & Wang, I. (2020). Fine mapping of the major anthracnose resistance QTL AnRGO in Capsicum chinense ‘PBC932’. Plant Biology, 20(1), 189. https://doi.org/10.1186/s12870-019-2115-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.