303
Views
1
CrossRef citations to date
0
Altmetric
Review

Grafting in vegetables to improve abiotic stress tolerance, yield and quality

, , , , , & show all
Pages 385-403 | Received 22 Sep 2023, Accepted 15 Dec 2023, Published online: 05 Jan 2024

References

  • Abdelmageed, A. H. A., & Gruda, N. (2009). Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. European Journal of Horticultural Science, 74(1), 6–20.
  • Ahmad, S., Ahmad, R., Ashraf, M. Y., Ashraf, M., & Waraich, E. A. (2009). Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pakistan Journal of Botany, 41(2), 647–654.
  • Ahn, S. J., Im, Y. J., Chung, G. C., Cho, B. H., & Suh, S. R. (1999). Physiological responses of grafted-cucumber leaves and rootstock roots affected by low root temperature. Scientia Horticulturae, 81(4), 397–408. https://doi.org/10.1016/S0304-4238(99)00042-4
  • Alan, O., Ozdemir, N., & Gunen, Y. (2007). Effect of grafting on watermelon plant growth, yield and quality. Journal of Agronomy, 6(2), 362–365. https://doi.org/10.3923/ja.2007.362.365
  • Alexopoulos, A. A., Kondylis, A., & Passam, H. C. (2007). Fruit yield and quality of watermelon in relation to grafting. Journal of Food, Agriculture & Environment, 5, 178–179. https://doi.org/10.3906/tar-1101-1716
  • Al-Harbi, A., Hejazi, A., & Al-Omran, A. (2017). Responses of grafted tomato (solanum lycopersicon L.) to abiotic stresses in Saudi Arabia. Saudi Journal of Biological Sciences, 24(6), 1274–1280. https://doi.org/10.1016/j.sjbs.2016.01.005
  • Arao, T., Takeda, H., & Nishihara, E. (2008). Reduction of cadmium translocation from roots to shoots in eggplant (solanum melongena) by grafting onto solanum torvum rootstock. Soil Science & Plant Nutrition, 54(4), 555–559. https://doi.org/10.1111/j.1747-0765.2008.00269.x
  • Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., & Arif, M. S. (2018). Environmental stress and secondary metabolites in plants: An overview. Plant Metabolites & Regulation Under Environmental Stress. https://doi.org/10.1016/B978-0-12-812689-9.00008-X
  • Awu, J. E., Nyaku, S. T., Amissah, J. N., Okorley, B. A., Agyapong, P. J., Doku, F. E., & Nkansah, G. O. (2023). Grafting for sustainable management of Fusarium wilt disease in tomato production in Ghana. Journal of Agriculture and Food Research, 14, 100710. https://doi.org/10.1016/j.jafr.2023.100710
  • Bahadur, A., Chatterjee, A., Kumar, R., Singh, M., & Naik, P. S. (2011). Physiological and biochemical basis of drought tolerance in vegetables. Vegetable Science, 38(1), 1–16.
  • Bahadur, A., Jangid, K. K., Singh, A. K., Singh, U., Rai, K. K., Singh, M. K., Rai, N., Singh, P. M., Rai, A. B., & Singh, B. (2016). Tomato genotypes grafted on eggplant: Physiological and biochemical tolerance under waterlogged condition. Vegetable Science, 43(2), 208–215.
  • Bahadur, A., Kumar, R., Krishna, H., & Behera, T. K. (2023). Abiotic stress in vegetable crops: Challenges and Strategies. Journal of Biotechnology & Bioresearch, 5(1). https://doi.org/10.31031/JBB.2023.05.000601
  • Bahadur, A., Rai, N., Kumar, R., Tiwari, S. K., Singh, A. K., Rai, A. K., Singh, U., Patel, P. K., Tiwari, V., Rai, A. B., & Singh, M. (2015). Grafting tomato on eggplant as a potential tool to improve waterlogging tolerance in hybrid tomato. Vegetable Science, 42(2), 82–87.
  • Balliu, A., Vuksani, G., Nasto, T., Haxhinasto, L., & Kaçiu, S. (2007). Grafting effects on tomato growth rate, yield and fruit quality under saline irrigation water. Acta Horticulturae, 801(801), 1161–1166. https://doi.org/10.17660/ActaHortic.2008.801.141
  • Barrett, C. E., Zhao, X., Sims, C. A., Brecht, J. K., Dreyer, E. Q., & Gao, Z. (2012). Fruit composition and sensory attributes of organic heirloom tomatoes as affected by grafting. HortTechnology, 22(6), 804–809. https://doi.org/10.21273/HORTTECH.22.6.804
  • Bayoumi, Y., Abd-Alkarim, E., El-Ramady, H., El-Aidy, F., Hamed, E. S., Taha, N., Prohens, J., & Rakha, M. (2021). Grafting improves fruit yield of cucumber plants grown under combined heat and soil salinity stresses. Horticulturae, 7(3), 61. https://doi.org/10.3390/horticulturae7030061
  • Bhatt, R. M., Upreti, K. K., Divya, M. H., Bhat, S., Pavithra, C. B., & Sadashiva, A. T. (2015). Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182, 8–17. https://doi.org/10.1016/j.scienta.2014.10.043
  • Bloom, A. J., Zwieniecki, M. A., Passioura, J. B., Randall, L. B., Holbrook, N. M., & Clair, D. A. (2004). Water relations under root chilling in a sensitive and tolerant tomato species. Plant, Cell & Environment, 27(8), 971–979. https://doi.org/10.1111/j.1365-3040.2004.01200.x
  • Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., Quesneville, H., Alseekh, S., Sørensen, I., Lichtenstein, G., Fich, E. A., Conte, M., Keller, H., Schneeberger, K., Schwacke, R., Ofner, I., Vrebalov, J., Xu, Y. Usadel, B. (2014). The genome of the stress-tolerant wild tomato species solanum pennellii. Nature Genetics, 46(9), 1034–1039. https://doi.org/10.1038/ng.3046
  • Cansev, A., & Ozgur, M. (2010). Grafting cucumber seedlings on Cucurbita spp.: Comparison of different grafting methods, scions and their performance. Journal of Food & Agriculture Environment, 8(3/4), 804–809.
  • Cantero-Navarro, E., Romero-Aranda, R., Fernández-Muñoz, R., Martínez-Andújar, C., Pérez-Alfocea, F., & Albacete, A. (2016). Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass. Plant Science, 251, 90–100. https://doi.org/10.1016/j.plantsci.2016.03.001
  • Chawda, V. (2021). Development of suitable rootstock and standardization of appropriate grafting technology for dry and humid areas of India. Acta horticulturae, (1302), 45–48. https://doi.org/10.17660/ActaHortic.2021.1302.6
  • Choi, K. J., Chung, G. C., & Ahn, S. J. (1995). Effect of root zone temperature on the mineral composition of xylem sap and plasma membrane K+–Mg++–ATPase activity of grafted cucumber and figleaf gourd root systems. HortScience, 30(4), 780–781. https://doi.org/10.21273/HORTSCI.30.4.780F
  • Choi, J. S., Khang, K. R., Khang, K. H., & Lee, S. S. (1992). Selection of cultivars and improvement of cultivation techniques for promoting export of cucumbers. Research Report, Ministry of Science and Technology, Seoul, Republic of Korea, 74.
  • Colla, G., Roupahel, Y., Cardarelli, M., & Rea, E. (2006). Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience, 41(3), 622–627. https://doi.org/10.21273/HORTSCI.41.3.622
  • Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2), 147–155. https://doi.org/10.1016/j.scienta.2010.08.004
  • Consentino, B. B., Rouphael, Y., Ntatsi, G., Pasquale, C. D., Iapichino, G., D’Anna, F., Bella, S. L., & Sabatino, L. (2022). Agronomic performance and fruit quality in greenhouse grown eggplant are interactively modulated by iodine dosage and grafting. Scientia Horticulturae, 295, 110891. https://doi.org/10.1016/j.scienta.2022.110891
  • Consentino, B. B., Sabatino, L., Vultaggio, L., Rotino, G. L., La Placa, G. G., D’Anna, F., Leto, C., Iacuzzi, N., & De, P. C. (2022). Grafting eggplant onto underutilized Solanum species and bio-stimulatory action of Azospirillum brasilense modulate growth, yield and nutritional functional traits. Horticulturae, 8(8), 722. https://doi.org/10.3390/horticulturae8080722
  • Cookson, S. J., Clemente Moreno, M. J., Hevin, C., Nyamba Mendome, L. Z., Delrot, S., Trossat-Magnin, C., & Ollat, N. (2013). Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism. Journal of Experimental Botany, 64(10), 2997–3008. https://doi.org/10.1093/jxb/ert144
  • Coskun, O. F. (2023). The effect of grafting on morphological, physiological and molecular changes induced by drought stress in cucumber. Sustainability, 15(1), 875. https://doi.org/10.3390/su15010875
  • Criddle, R. S., Smith, B. N., & Hansen, L. D. (1997). A respiration-based description of plant growth rate responses to temperature. Planta, 201(4), 441–445. https://doi.org/10.1007/s004250050087
  • Crinò, P., Lo Bianco, C., Rouphael, Y., Colla, G., Saccardo, F., & Paratore, A. (2007). Evaluation of rootstock resistance to Fusarium wilt and gummy stem blight and effect on yield and quality of a grafted ‘inodorus’ melon. HortScience, 42(3), 521–525. https://doi.org/10.21273/HORTSCI.42.3.521
  • Davis, A. R., & Perkins-Veazie, P. (2005). Rootstock effects on plant vigor and watermelon fruit quality. Report-Cucurbit Genetics Cooperative, 28, 39.
  • Davis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R., & Zhang, X. (2008). Grafting effects on vegetable quality. HortScience, 43(6), 1670–1672. https://doi.org/10.21273/HORTSCI.43.6.1670
  • Davis, A. R., Perkins-Veazie, P., Sakata, Y., Lopez-Galarza, S., Maroto, J. V., Lee, S. G., Lee, J. M., Sun, Z., Miguel, A., King, S. R., Cohen, R., & Lee, J.-M. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50–74. https://doi.org/10.1080/07352680802053940
  • Delfine, S., Tognetti, R., Loreto, F., & Alvino, A. (2002). Physiological and growth responses to water stress in field-grown bell pepper (capsicum annuum L.). The Journal of Horticultural Science & Biotechnology, 77(6), 697–704. https://doi.org/10.1080/14620316.2002.11511559
  • DiGioia, B. F., Serio, F., Buttaro, D., Ayala, O., & Santamaria, P. (2010). Influence of rootstock on vegetative growth, fruit yield and quality in ‘Cuore di bue’, an heirloom tomato. Journal of Horticulture Science & Biotechnology, 85(6), 477–482. https://doi.org/10.1080/14620316.2010.11512701
  • Djidonou, D., Zhao, X., Simonne, E. H., Koch, K. E., & Erickson, J. E. (2013). Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience, 48(4), 485–492. https://doi.org/10.21273/HORTSCI.48.4.485
  • Edelstein, M., Ben-Hur, M., & Plaut, Z. (2007). Grafted melons irrigated with fresh or effluent water tolerate excess boron. Journal of the American Society for Horticultural Science, 132(4), 484–491. https://doi.org/10.21273/JASHS.132.4.484
  • Estan, M. T., Martinez-Rodriguez, M. M., Perez-Alfocea, F., Flowers, T. J., & Bolarin, M. C. (2005). Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany, 56(412), 703–712. https://doi.org/10.1093/jxb/eri027
  • Expósito, A., Pujolà, M., Achaerandio, I., Giné, A., Escudero, N., Fullana, A. M., Cunquero, M., Loza-Alvarez, P., & Sorribas, F. J. (2020). Tomato and melon meloidogyne resistant rootstocks improve crop yield but melon fruit quality is influenced by the cropping season. Frontiers in Plant Science, 11, 560024. https://doi.org/10.3389/fpls.2020.560024
  • Farhadi, A., Aroeii, H., Nemati, H., Salehi, R., & Giuffrida, F. (2016). The effectiveness of different rootstocks for improving yield and growth of cucumber cultivated hydroponically in a greenhouse. Horticulturae, 2(1), 1–7. https://doi.org/10.3390/horticulturae2010001
  • Fernández-García, N., Martínez, V., Cerdá, A., & Carvajal, M. (2004). Fruit quality of grafted tomato plants grown under saline conditions. Journal of Horticultural Science & Biotechnology, 79(6), 995–1001. https://doi.org/10.1080/14620316.2004.11511880
  • Fu, S., Chen, J., Wu, X., Gao, H., & Lü, G. (2022). Comprehensive evaluation of low temperature and salt tolerance in grafted and rootstock seedlings combined with yield and quality of grafted tomato. Horticulturae, 8(7), 595. https://doi.org/10.3390/horticulturae8070595
  • Fuentes-Merlos, M. I., Bamba, M., Sato, S., & Higashitani, A. (2022). Comparative transcriptome analysis of grafted tomato with drought tolerance. Plants, 11(15), 1947. https://doi.org/10.3390/plants11151947
  • Fuentes-Merlos, M. I., Bamba, M., Sato, S., & Higashitani, A. (2023). Self-grafting induced epigenetic changes leading to drought stress tolerance in tomato plants. DNA Research, 30(4), 16. https://doi.org/10.1093/dnares/dsad016
  • Fu, X., Lv, C. Y., Zhang, Y. Y., Ai, X. Z., & Bi, H. G. (2023). Comparative transcriptome analysis of grafting to improve chilling tolerance of cucumber. Protoplasma, 260(5), 1349–1364. https://doi.org/10.1007/s00709-023-01854-6
  • Garcia, A. L., Marcelis, L., García-Sánchez, F., Nicolas, N., & Martínez, V. (2007). Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply. Biologia Plantarum, 51(4), 707–712. https://doi.org/10.1007/s10535-007-0146-1
  • Gerster, H. (1997). The potential role of lycopene for human health. Journal of the American College of Nutrition, 16(2), 109–126. https://doi.org/10.1080/07315724.1997.10718661
  • Gisbert-Mullor, R., Ceccanti, C., Padilla, Y. G., López-Galarza, S., Ángeles, C., Conte, G., & Guidi, L. (2020). Effect of grafting on the production, physico-chemical characteristics and nutritional quality of fruit from pepper landraces. Antioxidants, 9(6), 501. https://doi.org/10.3390/antiox9060501
  • Goncalves, L. P., Boscariol-Camargo, R. L., Takita, M. A., Machado, M. A., dos Sores- Filho, W. S., & Costa, M. G. C. (2019). Rootstock induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq. BMC Genomics, 20(1), 110. https://doi.org/10.1186/s12864-019-5481-z
  • Goreta, S., Bucevic-Popovic, V., Selak, G. V., Pavela-Vrancic, M., & Perica, S. (2008). Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. The Journal of Agricultural Science, 146(6), 695–704 . https://doi.org/10.1017/S0021859608007855
  • Guler, Z., Karaca, F., & Yetisir, H. (2013). Volatile compounds in the peel and flesh of cucumber (cucumis sativus L.) grafted onto bottle gourd (lagenaria siceraria) rootstocks. Journal of Horticultural Science and Biotechnology, 88(2), 123–128. https://doi.org/10.1080/14620316.2013.11512945
  • Habibi, F., Liu, T., Folta, K., & Sarkhosh, A. (2022). Physiological, biochemical, and molecular aspects of grafting in fruit trees. Horticulture Research, 9. https://doi.org/10.1093/hr/uhac032
  • Haghighi, M., & Khosravi, S. (2022). Effects of grafting on cucumber growth under flooding stress during 15 days in vegetative stage. Journal of Agricultural Science and Technology, 24(4), 873–883. https://jast.modares.ac.ir/article-23-42206-en.html
  • Helyes, L., Lugasi, A., Pogonyi, A., & Pék, Z. (2009). Effect of variety and grafting on lycopene content of tomato (lycopersicon lycopersicum L. Karsten) fruit. Acta Alimentaria, 38(1), 27–34. https://doi.org/10.1556/AAlim.2008.0013
  • Huang, Y., Bie, Z., He, S., Hua, B., Zhen, A., & Liu, Z. (2010). Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environmental & Experimental Botany, 69(1), 32–38. https://doi.org/10.1016/j.envexpbot.2010.02.002
  • Huang, Y., Tang, R., Cao, Q., & Bie, Z. (2009). Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Scientia Horticulturae, 122(1), 26–31. https://doi.org/10.1016/j.scienta.2009.04.004
  • Huitrón-Ramírez, M. V., Ricárdez-Salinas, M., & Camacho-Ferre, F. (2009). Influence of grafted watermelon plant density on yield and quality in soil infested with melon necrotic spot virus. HortScience, 44(7), 1838–1841. https://doi.org/10.21273/HORTSCI.44.7.1838
  • Irisarri, P., Zhebentyayeva, T., Errea, P., & Pina, A. (2016). Differential expression of phenylalanine ammonia lyase (PAL) genes implies distinct roles in development of graft incompatibility symptoms in Prunus. Scientia Horticulturae, 204, 16–24. https://doi.org/10.1016/j.scienta.2016.03.025
  • Kaleem, M. M., Nawaz, M. A., Shariq, M. A., Ding, X., Cheng, J., & Bie, Z. (2023). Rootstock–scion interaction mediated impact on fruit quality attributes of thick-skinned melon during storage under different temperature regimes. Scientia Horticulturae, 312, 111823. https://doi.org/10.1016/j.scienta.2022.111823
  • Karkute, S. G., Ansari, W. A., Singh, A. K., Singh, P. M., Rai, N., Bahadur, A., & Singh, J. (2021). Characterization of high-temperature stress-tolerant tomato (solanum lycopersicum L.) genotypes by biochemical analysis and expression profiling of heat-responsive genes. 3 Biotech, 11(2), 1–10. https://doi.org/10.1007/s13205-020-02587-6
  • Kato, C., Ohshima, N., Kamada, H., & Satoh, S. (2001). Enhancement of the inhibitory activity for greening in xylem sap of squash root with waterlogging. Plant Physiology and Biochemistry, 39(6), 513–519. https://doi.org/10.1016/S0981-9428(01)01262-1
  • Khah, E. M., Kakava, E., Mavromatis, A., Chachalis, D., & Goulas, C. (2006). Effect of grafting on growth and yield of tomato (lycopersicon esculentum mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8(1), 3–7. https://doi.org/10.37855/jah.2006.v08i01.01
  • Khankahdani, H. H., Zakeri, E., Saeedi, G., & Shakerdargah, G. (2012). Evaluation of different rootstocks and grafting techniques on graft union percent, yield and yield components of watermelon cv. ‘Crimson sweet’. World Applied Sciences Journal, 18(5), 645–651.
  • Krumbein, A., & Schwarz, D. (2013). Grafting: A possibility to enhance health-promoting and flavour compounds in tomato fruits of shaded plants. Scientia Horticulturae, 149, 97–107. https://doi.org/10.1016/j.scienta.2012.09.003
  • Kumari, A., Kumar, J., Kumar, A., Chaudhury, A., Singh, S. P., & Gibas, C. (2015). Grafting triggers differential responses between scion and rootstock. PLoS One, 10(4), e0124438. https://doi.org/10.1371/journal.pone.0124438
  • Lee, J. M., Bang, H. J., & Ham, H. S. (1999). Quality of cucumber fruit as affected by rootstock. Acta horticulturae, 483(483), 117–124. https://doi.org/10.17660/ActaHortic.1999.483.12
  • Lee, C., Joshua, T. H., Qin, K., & Daniel, I. L. (2023). Physio-biochemical responses of grafted tomatoes differing in thermotolerance to heat stress and recovery. Scientia Horticulturae, 308, 111546. https://doi.org/10.1016/j.scienta.2022.111546
  • Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2), 93–105. https://doi.org/10.1016/j.scienta.2010.08.003
  • Lee, J. M., & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61–124. https://doi.org/10.1002/9780470650851.ch2
  • Liang, L., Lian, H., Li, H., Dong, Y., Tang, W., Zhang, R., Peng, X., Li, X., & Tang, Y. (2023). Interspecific rootstocks improve the low-temperature resistance of bitter gourd through sucrose and nitrogen metabolism regulation. Acta Physiologia Plantarum, 45(8), 97. https://doi.org/10.1007/s11738-023-03577-w
  • Liao, C. T., & Lin, C. H. (1996). Photosynthetic responses of grafted bitter melon seedlings to flood stress. Environmental and Experimental Botany, 36(2), 167–172. https://doi.org/10.1016/0098-8472(96)01009-X
  • Liu, B., Ren, J., Zhang, Y., An, J., Chen, M., Chen, H., Xu, C., & Ren, H. (2015). A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agronomy for Sustainable Development, 35(1), 251–259. https://doi.org/10.1007/s13593-014-0234-5
  • Liu, W., Wang, Q., Zhang, R., Liu, M., Wang, C., & Liu, Z., & Zhang, W. (2022). Rootstock–scion exchanging mRnas participate in the pathways of amino acid and fatty acid metabolism in cucumber under early chilling stress. Horticulture Research, 9, uhac031. https://doi.org/10.1093/hr/uhac031
  • Liu, Z. L., Zhu, Y. L., Wei, G. P., Yang, L. F., Zhang, G. W., & Hu, C. M. (2007). Metabolism of ascorbic acid and glutathione in leaves of grafted eggplant seedlings under NaCl stress. Acta Botanica Boreal-Occidentalia Sinica, 27(9), 1795–1800.
  • Li, T., & Yu, X. (2007). Effect of Cu2+, Zn2+, and Mn2+ on SOD activity of cucumber leaves extraction after low temperature stress. Acta Horticulturae Sinica, 34(4), 895–900.
  • Long, H., Li, Z., Suo, H., Ou, L., Miao, W., & Deng, W. (2023). Study on the mechanism of grafting to improve the tolerance of pepper to low temperature. Agronomy, 13(5), 1347. https://doi.org/10.3390/agronomy13051347
  • Mahbou, S. T. G., Ntsomboh-Ntsefong, G., Aminatou, M. F., Lessa, F. T., Onana, G. E., & Youmbi, E. (2022). Effect of grafting on growth and shelf life of tomatoes (solanum lycopersicum L.) grafted on two local solanum species. Advances in Bioscience and Biotechnology, 13(9), 401–418. https://doi.org/10.4236/abb.2022.139026
  • Mandal, S., Raju, R., Kumar, A., Kumar, P., & Sharma, P. C. (2018). Current status of research, technology response and policy need of salt-affected soils in India—A review. Journal of Indian Society of Coastal Agricultural Research, 36, 40–53.
  • Ma, Q., Niu, C., Wang, C., Chen, C., Li, Y., & Wei, M. (2023). Effects of differentially expressed microRnas induced by rootstocks and silicon on improving chilling tolerance of cucumber seedlings (cucumis sativus L.). BMC Genomics, 24(1), 250. https://doi.org/10.1186/s12864-023-09337-x
  • Maršić, N. K., & Jakše, M. (2010). Growth and yield of grafted cucumber (cucumis sativus L.) on different soilless substrates. Journal of Food, Agriculture and Environment, 8(2), 654–658.
  • Martinez-Rodriguez, M. M., Estañ, M. T., Moyano, E., Garcia-Abellan, J. O., Flores, F. B., Campos, J. F., Al-Azzawi, M. J., Flowers, T. J., & Bolarín, M. C. (2008). The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environmental and Experimental Botany, 63(1–3), 392–401. https://doi.org/10.1016/j.envexpbot.2007.12.007
  • Matsuzoe, N., Aida, H., Hanada, K., Ali, M., Okubo, H., & Fujieda, K. (1996). Fruit quality of tomato plants grafted on solanum rootstocks. Journal of the Japanese Society for Horticultural Science, 65(1), 73–80. https://doi.org/10.2503/jjshs.65.73
  • Miguel, A., Maroto, J. V., San Bautista, A., Baixauli, C., Cebolla, V., Pascual, B., Lopez, S., & Guardiola, J. L. (2004). The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Scientia Horticulturae, 103(1), 9–17. https://doi.org/10.1016/j.scienta.2004.04.007
  • Mohsenian, Y., Roosta, H. R., Karimi, H. R., & Esmaeilizade, M. (2012). Investigation of the ameliorating effects of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato as rootstocks on alkali stress in tomato plants. Photosynthetica, 50(3), 411–421. https://doi.org/10.1007/s11099-012-0054-2
  • Muramatsu, Y. (1981). Problems on vegetable grafting. Journal of Irrigation Engineering and Rural Planning, 10(11), 48–53.
  • Nicoletto, C., Tosini, F., & Sambo, P. (2013). Effect of grafting and ripening conditions on some qualitative traits of ‘Cuore di bue’ tomato fruits. Journal of Science & Food Agriculture, 93(6), 1397–1403. https://doi.org/10.1002/jsfa.5906
  • Nurdika, A. A. H., Arwiyanto, T., Sulandari, S., Joko, T., & Kandito, A. (2023). Grafting tomato with resistant eggplant and bacteriophages treatment to suppress the development of bacterial wilt disease (ralstonia pseudosolanacearum). Archives of Phytopathology and Plant Protection, 56(9), 686–706. https://doi.org/10.1080/03235408.2023.2216358
  • Oda, M., Nagata, M., Tsuji, K., & Sasaki, H. (1996). Effects of scarlet eggplant rootstock on growth, yield, and sugar content of grafted tomato fruits. Journal of the Japanese Society for Horticultural Science, 65(3), 531–536. https://doi.org/10.2503/jjshs.65.531
  • Okorley, B. A., Agyeman, C., Amissah, N., & Nyaku, S. T. (2018). Screening selected solanum plants as potential rootstocks for the management of root-knot nematodes (meloidogyne incognita). International Journal of Agronomy, 2018, 1–9. https://doi.org/10.1155/2018/6715909
  • Otani, T., & Seike, N. (2007). Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucumis sativus). Journal of Pesticide Science, 32(3), 235–242. https://doi.org/10.1584/jpestics.G06-49
  • Özdemir, A., Çandır, E., Yetişir, H., Aras, V., Arslan, Ö., Baltaer, Ö., Ustun, D. & Ünlü, M. (2016). Effects of rootstocks on storage and shelf life of grafted watermelons. Journal of Applied Botany and Food Quality, 89, 191–201. https://doi.org/10.5073/JABFQ.2016.089.024
  • Padilla, Y. G., Gisbert-Mullor, R., Lopez-Galarza, S., Albacete, A., Martınez-Melgarejo, P. A., & Calatayud, A. (2023). Short-term water stress responses of grafted pepper plants are associated with changes in the hormonal balance. Frontiers in Plant Science, 14, 1170021. https://doi.org/10.3389/fpls.2023.1170021
  • Palada, M. C., & Wu, D. L. (2008). Evaluation of chili rootstocks for grafted sweet pepper production during the hot-wet and hot-dry seasons in Taiwan. Acta Horticulture, 767(767), 151–158. https://doi.org/10.17660/ActaHortic.2008.767.14
  • Pal, S., Rao, E. S., Hebbar, S. S., Sriram, S., Pitchaimuthu, M., & Rao, V. K. (2020). Assessment of Fusarium wilt resistant citrullus sp. rootstocks for yield and quality traits of grafted watermelon. Scientia Horticulturae, 272, 109497. https://doi.org/10.1016/j.scienta.2020.109497
  • Penella, C., Landi, M., Guidi, L., Nebauer, S. G., Pellegrini, E., San Bautista, A., Remorini, D., Nali, C., López-Galarza, S., & Calatayud, A. (2016). Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology, 193, 1–11. https://doi.org/10.1016/j.jplph.2016.02.007.02.007
  • Peng, Y., Cao, H., Peng, Z., Zhou, L., Sohail, H., Cui, L., Yang, L., Huang, Y., & Bie, Z. (2023). Transcriptomic and functional characterization reveals CsHAK5; 3 as a key player in K+ homeostasis in grafted cucumbers under saline conditions. Plant Science, 326, 111509. https://doi.org/10.1016/j.plantsci.2022.111509
  • Peng, Y. Q., Zhu, J., Li, W. J., Gao, W., Shen, R. Y., & Meng, L. J. (2020). Effects of grafting on root growth, anaerobic respiration enzyme activity and aerenchyma of bitter melon under waterlogging stress. Scientia Horticulturae, 261, 108977. https://doi.org/10.1016/j.scienta.2019.108977
  • Pogonyi, A., Pék, Z., Helyes, L., & Lugasi, A. (2005). Effect of grafting on the tomato’s yield, quality and main fruit components in spring forcing. Acta Alimentaria, 34(4), 453–462. https://doi.org/10.1556/aalim.34.2005.4.12
  • Proietti, S., Rouphael, Y., Colla, G., Cardarelli, M., De Agazio, M., Zacchini, M., Rea, E., Moscatello, S., & Battistelli, A. (2008). Fruit quality of mini‐watermelon as affected by grafting and irrigation regimes. Journal of the Science of Food and Agriculture, 88(6), 1107–1114. https://doi.org/10.1002/jsfa.3207
  • Qin, L., He, J., Lee, S. K., & Dodd, I. C. (2007). An assessment of the role of ethylene in mediating lettuce (lactuca sativa) root growth at high temperatures. Journal of Experimental Botany, 58(11), 3017–3024. https://doi.org/10.1093/jxb/erm156
  • Razi, K., & Muneer, S. (2023). Grafting enhances drought tolerance by regulating and mobilizing proteome, transcriptome and molecular physiology in okra genotypes. Frontiers in Plant Science, 14, 1178935. https://doi.org/10.3389/fpls.2023.1178935
  • Riga, P., Benedicto, L., García-Flores, L., Villaño, D., Medina, S., & Gil-Izquierdo, Á. (2016). Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. Journal of Food Composition & Analysis, 46, 50–59. https://doi.org/10.1016/j.jfca.2015.11.003
  • Rivero, R. M., Ruiz, J. M., & Romero, L. (2003). Can grafting in tomato plants strengthen resistance to thermal stress? Journal of Science & Food Agriculture, 83(13), 1315–1319. https://doi.org/10.1002/jsfa.1541
  • Rivero, R. M., Ruiz, J. M., Sanchez, E., & Romero, L. (2003). Does grafting provide tomato plants an advantage against H2O2 production under conditions of thermal shock? Physiologia Plantarum, 117(1), 44–50. https://doi.org/10.1034/j.1399-3054.2003.1170105.x
  • Ropokis, A., Ntatsi, G., Kittas, C., Katsoulas, N., & Savvas, D. (2019). Effects of temperature and grafting on yield, nutrient uptake, and water use efficiency of a hydroponic sweet pepper crop. Agronomy, 9(2), 110. https://doi.org/10.3390/agronomy9020110
  • Rouphael, Y., Cardarelli, M., Colla, G., & Rea, E. (2008). Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience, 43(3), 730–736. https://doi.org/10.21273/HORTSCI.43.3.730
  • Rouphael, Y., Schwarz, D., Krumbein, A., & Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127(2), 172–179. https://doi.org/10.1016/j.scienta.2010.09.001
  • Sabatino, L., Bella, S. L., Ntatsi, G., Iapichino, G., D’Anna, F., Pasquale, C. D., Consentino, B. B., & Rouphael, Y. (2021). Selenium biofortification and grafting modulate plant performance and functional features of cherry tomato grown in a soilless system. Scientia Horticulturae, 285, 110095. https://doi.org/10.1016/j.scienta.2021.110095
  • Sadeghi, Z., Shamshiri, M. H., Soroush, F., & Karimi, H. R. (2023). Evaluation of growth, yield and elements uptake of grafted tomatoes on several solanaceous rootstocks exposed to deficit irrigation. Journal of Plant Nutrition, 46(17), 4326–4339. https://doi.org/10.1080/01904167.2023.2229873
  • Sánchez-Rodríguez, E., Del Mar Rubio-Wilhelmi, M., Blasco, B., Leyva, R., Romero, L., & Ruiz, J. M. (2012). Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Science, 188, 89–96. https://doi.org/10.1016/j.plantsci.2011.12.019
  • Sanwal, S. K., Mann, A., Kumar, A., Kesh, H., Kaur, G., Rai, A. K., Kumar, R., Sharma, P. C., Kumar, A., Bahadur, A., Singh, B., & Kumar, P. (2022). Salt tolerant eggplant rootstocks modulate sodium partitioning in tomato scion and improve performance under saline conditions. Agriculture, 12(2), 183. https://doi.org/10.3390/agriculture12020183
  • Savvas, D., Papastavrou, D., Ntatsi, G., Ropokis, A., Olympios, C., Hartmann, H., & Schwarz, D. (2009). Interactive effects of grafting and manganese supply on growth, yield, and nutrient uptake by tomato. Horticulture Science, 44(7), 1978–1982. https://doi.org/10.21273/HORTSCI.44.7.1978
  • Seong, K., Moon, J. H., Lee, S. G., Kang, Y. G., Kim, K. Y., & Seo, H. D. (2003). Growth, lateral shoot development, and fruit yield of white of white-spined cucumber (cucumis sativus cv. Baekseong-3) as affected by grafting methods. Journal–Korean Society for Horticultural Science, 44(4), 478–482.
  • Shams, M., & Khadivi, A. (2023). Mechanisms of salinity tolerance and their possible application in the breeding of vegetables. BMC Plant Biology, 23(1), 139. https://doi.org/10.1186/s12870-023-04152-8
  • Shehata, S. A., Omar, H. S., Elfaidy, A. G., El-Sayed, S. S., Abuarab, M. E., & Abdeldaym, E. A. (2022). Grafting enhances drought tolerance by regulating stress-responsive gene expression and antioxidant enzyme activities in cucumbers. BMC Plant Biology, 22(1), 1–17. https://doi.org/10.1186/s12870-022-03791-7
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Singh, H., Kumar, P., Kumar, A., Kyriacou, M. C., Colla, G., & Rouphael, Y. (2020). Grafting tomato as a tool to improve salt tolerance. Agronomy, 10(2), 263. https://doi.org/10.3390/agronomy10020263
  • Starck, Z., Niemyska, B., Bogdan, J., & Tawalbeh, R. N. A. (2000). Response of tomato plants to chilling stress in association with nutrient or phosphorus starvation. Plant and Soil, 226(1), 99–106. https://doi.org/10.1023/A:1026497104077
  • Thangamani, C., Pugalendhi, L., & Punithaveni, V. (2018). Screening wild and cultivated cucurbits against root knot nematode to exploit as rootstocks for grafting in cucumber. Journal of Horticultural Sciences, 13(1), 32–41. https://doi.org/10.24154/jhs.v13i1.28
  • Thomas, H. R., & Frank, M. H. (2019). Connecting the pieces: Uncovering the molecular basis for long‐distance communication through plant grafting. New Phytologist, 223(2), 582–589. https://doi.org/10.1111/nph.15772
  • Traka-Mavrona, E., Koutsika-Sotiriou, M., & Pritsa, T. (2000). Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Scientia Horticulturae, 83(3–4), 353–362. https://doi.org/10.1016/S0304-4238(99)00088-6
  • Tsaballa, A., Athanasiadis, C., Pasentsis, K., Ganopoulos, I., Nianiou-Obeidat, I., & Tsaftaris, A. (2013). Molecular studies of inheritable grafting induced changes in pepper (capsicum annuum) fruit shape. Scientia Horticulturae, 149, 2–8. https://doi.org/10.1016/j.scienta.2012.06.018
  • Tsaballa, A., Xanthopoulou, A., Madesis, P., Tsaftaris, A., & Nianiou-Obeidat, I. (2021). Vegetable grafting from a molecular point of view: The involvement of epigenetics in rootstock-scion interactions. Frontiers in Plant Science, 11, 621999. https://doi.org/10.3389/fpls.2020.621999
  • Turhan, A., Ozmen, N., Serbeci, M. S., & Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38(4), 142–149. https://doi.org/10.17221/51/2011-HORTSCI
  • Ulas, A., Aydin, A., Ulas, F., Yetisir, H., & Miano, T. F. (2020). Cucurbita rootstocks improve salt tolerance of melon scions by inducing physiological, biochemical and nutritional responses. Horticulturae, 6(4), 66. https://doi.org/10.3390/horticulturae6040066
  • Uygur, V., & Yetisir, H. (2009). Effects of rootstocks on some growth parameters, phosphorous and nitrogen uptake watermelon under salt stress. Journal of Plant Nutrition, 32(4), 629–643. https://doi.org/10.1080/01904160802715448
  • Venema, J. H., Dijk, B. E., Bax, J. M., van Hasselt, P. R., & Elzenga, J. T. M. (2008). Grafting tomato (solanum lycopersicum) onto the rootstock of a high-altitude accession of solanum habrochaites improves suboptimal-temperature tolerance. Environmental and Experimental Botany, 63(1–3), 359–367. https://doi.org/10.1016/j.envexpbot.2007.12.015
  • Vinkovic, V. I., Samobor, V., Bojic, M., Medic-Saric, M., Vukobratovic, M., Erhatic, R., Horvat, D., & Matotan, Z. (2011). The effect of grafting on the antioxidant properties of tomato (solanum lycopersicumL). Spanish Journal of Agriculture Research, 9(3), 844–851. https://doi.org/10.5424/sjar/20110903-414-10
  • Wang, Y., Zhou, J., Wen, W., Sun, J., Shu, S., & Guo, S. (2023). Transcriptome and proteome analysis identifies salt stress response genes in bottle gourd rootstock-grafted watermelon seedlings. Agronomy, 13(3), 618. https://doi.org/10.3390/agronomy13030618
  • Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J., & Miller, A. J. (2016). Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends in Plant Science, 21(5), 418–437. https://doi.org/10.1016/j.tplants.2015.11.008
  • Wu, X., Yuan, D., Bian, X., Huo, R., Lü, G., Gong, B., Li, J., Liu, S., & Gao, H. (2023). Transcriptome analysis showed that tomato-rootstock enhanced salt tolerance of grafted seedlings was accompanied by multiple metabolic processes and gene differences. Frontiers in Plant Science, 14, 1167145. https://doi.org/10.3389/fpls.2023.1167145
  • Xu, S. L., & Chen, X. Q. (2004). Effect of grafting and seedling on “ha mi” muskmelon yield and its resistance to melon Fusarium wilt. Chinese Agricultural Science Bulletin, 20(1), 185. www.casb.org.cn/EN/Y2004/V20/I1/185
  • Yamasaki, A., Yamashita, M., & Furuya, S. (1994). Mineral concentrations and cytokinin activity in the xylem exudate of grafted watermelons as affected by rootstocks and crop load. Journal of the Japanese Society for Horticultural Science, 62(4), 817–826. https://doi.org/10.2503/jjshs.62.817
  • Yetisir, H., Caliskan, M. E., Soylu, S., & Sakar, M. (2006). Some physiological and growth responses of watermelon [Citrullus lanatus (thunb.) Matsum. And Nakai] grafted onto Lagenaria siceraria to flooding. Environmental and Experimental Botany, 58(1–3), 1–8. https://doi.org/10.1016/j.envexpbot.2005.06.010
  • Yetisir, H., Kurt, Ş., Sarı, N., & Tok, M. F. (2007). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: Plant growth, graft compatibility and resistance to fusarium. Turkish Journal Agriculture and Forestry, 31(6), 381–388. https://journals.tubitak.gov.tr/agriculture/vol31/iss6/4
  • Yetisir, H., & Sari, N. (2003). Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 43(10), 1269–1274. https://doi.org/10.1071/EA02095
  • Yetisir, H., Sari, N., & Yucel, S. (2003). Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica, 31(2), 163–169. https://doi.org/10.1007/BF02980786
  • Yetisir, H., & Uygur, V. (2010). Responses of grafted watermelon onto different gourd species to salinity stress. Journal of Plant Nutrition, 33(3), 315–327. https://doi.org/10.1080/01904160903470372
  • Zhen, X., Sun, Y., Yuan, X., Ma, Z. Y., Hong, Y., & Xia, S. (2023). Impact of Cucurbita moschata resistant rootstocks on Cucumis sativus fruit and Meloidogyne incognita development. Plant Disease, 4. https://doi.org/10.1094/PDIS-02-22-0319-RE
  • Zhou, S., Wei, S., Boone, B., & Levy, S. (2007). Microarray analysis of genes affected by salt stress in tomato. African Journal of Environmental Science and Technology, 1(2), 14–26.
  • Zhu, J., Bie, Z., Huang, Y., & Han, X. (2008). Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition, 54(6), 895–902. https://doi.org/10.1111/j.1747-0765.2008.00306.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.