460
Views
0
CrossRef citations to date
0
Altmetric
Review

An overview of the recent developments and current status on the preharvest application of LED technology in controlled environment agriculture

ORCID Icon &
Received 14 Aug 2023, Accepted 05 Apr 2024, Published online: 17 Apr 2024

References

  • Al Murad, M., Razi, K., Jeong, B. R., Samy, P. M. A., & Muneer, S. (2021). Light emitting diodes (LEDs) as agricultural lighting: Impact and its potential on improving physiology, flowering, and secondary metabolites of crops. Sustainability, 13(4), 1985. https://doi.org/10.3390/su13041985
  • Appolloni, E., Pennisi, G., Paucek, I., Cellini, A., Crepaldi, A., Spinelli, F., Gianquinto, G., Gabarrell, X., & Orsini, F. (2023). Potential application of pre-harvest LED interlighting to improve tomato quality and storability. Postharvest Biology and Technology, 195, 112113. https://doi.org/10.1016/j.postharvbio.2022.112113
  • Ashenafi, E. L., Nyman, M. C., Holley, J. M., & Mattson, N. S. (2023). The influence of LEDs with different blue peak emission wavelengths on the biomass, morphology, and nutrient content of kale cultivars. Scientia Horticulturae, 317, 111992. https://doi.org/10.1016/j.scienta.2023.111992
  • Bian, Z., Cheng, R., Wang, Y., Yang, Q., & Lu, C. (2018). Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes. Environmental and Experimental Botany, 153, 63–71. https://doi.org/10.1016/j.envexpbot.2018.05.010
  • Chen, M., Chory, J., & Fankhauser, C. (2004). Light signal transduction in higher plants. Annual Review of Genetics, 38(1), 87–117. https://doi.org/10.1146/annurev.genet.38.072902.092259
  • Claypool, N. B., & Lieth, J. H. (2020). Physiological responses of pepper seedlings to various ratios of blue, green, and red-light using LED lamps. Scientia Horticulturae, 268, 109371. https://doi.org/10.1016/j.scienta.2020.109371
  • Courbier, S., & Pierik, R. (2019). Canopy light quality modulates stress responses in plants. Iscience, 22, 441–452. https://doi.org/10.1016/j.isci.2019.11.035
  • Demir, K., Sarıkamış, G., & Seyrek, G. Ç. (2023). Effect of LED lights on the growth, nutritional quality and glucosinolate content of broccoli, cabbage and radish microgreens. Food Chemistry, 401, 134088. https://doi.org/10.1016/j.foodchem.2022.134088
  • Gam, D. T., Khoi, P. H., Ngoc, P. B., Linh, L. K., Hung, N. K., Anh, P. T. L., Thu, N. T., Hien, N. T. T., Khanh, T. D., & Ha, C. H. (2020). LED lights promote growth and flavonoid accumulation of Anoectochilus roxburghii and are linked to the enhanced expression of several related genes. Plants, 9(10), 1344. https://doi.org/10.3390/plants9101344
  • Gao, W., He, D., Ji, F., Zhang, S., & Zheng, J. (2020). Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy, 10(8), 1082. https://doi.org/10.3390/agronomy10081082
  • Guo, X., Xue, X., Chen, L., Li, J., Wang, Z., & Zhang, Y. (2023). Effects of leds light spectra on the growth, yield, and quality of winter wheat (triticum aestivum L.) cultured in plant factory. Journal of Plant Growth Regulation, 42(4), 2530–2544. https://doi.org/10.1007/s00344-022-10724-z
  • Hamedalla, A. M., Ali, M. M., Ali, W. M., Ahmed, M. A., Kaseb, M. O., Kalaji, H. M., Gajc-Wolska, J., & Yousef, A. F. (2022). Increasing the performance of cucumber (cucumis sativus L.) seedlings by LED illumination. Scientific Reports, 12(1), 852. https://doi.org/10.1038/s41598-022-04859-y
  • Hytönen, T., Pinho, P., Rantanen, M., Kariluoto, S., Lampi, A., Edelmann, M., Joensuu, K., Kauste, K., Mouhu, K., Piironen, V., Halonen, L., & Elomaa, P. (2018). Effects of LED light spectra on lettuce growth and nutritional composition. Lighting Research and Technology, 50(6), 880–893. https://doi.org/10.1177/1477153517701300
  • Izzo, L. G., Mickens, M. A., Aronne, G., & Gómez, C. (2021). Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce. Physiologia Plantarum, 172(4), 2191–2202. https://doi.org/10.1111/ppl.13395
  • Kaiser, E., Weerheim, K., Schipper, R., & Dieleman, J. A. (2019). Partial replacement of red and blue by green light increases biomass and yield in tomato. Scientia Horticulturae, 249, 271–279. https://doi.org/10.1016/j.scienta.2019.02.005
  • Kalaitzoglou, P., Van Ieperen, W., Harbinson, J., Van der Meer, M., Martinakos, S., Weerheim, K., Nicole, C. C., & Marcelis, L. F. (2019). Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. Frontiers in Plant Science, 10, 322. https://doi.org/10.3389/fpls.2019.00322
  • Khan, F. A. (2018). A review on hydroponic greenhouse cultivation for sustainable agriculture. International Journal of Agriculture Environment and Food Sciences, 2(2), 59–66. https://doi.org/10.31015/jaefs.18010
  • Khan, S., Purohit, A., & Vadsaria, N. (2020). Hydroponics: Current and future state of the art in farming. Journal of Plant Nutrition, 44(10), 1515–1538. https://doi.org/10.1080/01904167.2020.1860217
  • Lazzarin, M., Meisenburg, M., Meijer, D., Van Ieperen, W., Marcelis, L. F. M., Kappers, I. F., Van der Krol, A. R., van Loon, J. J. A., & Dicke, M. (2021). Leds make it resilient: Effects on plant growth and defense. Trends in Plant Science, 26(5), 496–508. https://doi.org/10.1016/j.tplants.2020.11.013
  • Liu, H., Fu, Y., Hu, D., Yu, J., & Liu, H. (2018). Effect of green, yellow and purple radiation on biomass, photosynthesis, morphology and soluble sugar content of leafy lettuce via spectral wavebands “knock out”. Scientia Horticulturae, 236, 10–17. https://doi.org/10.1016/j.scienta.2018.03.027
  • Liu, X., Shi, R., Gao, M., He, R., Li, Y., & Liu, H. (2022). Effects of LED light quality on the growth of pepper (Capsicum spp.) seedlings and the development after transplanting. Agronomy, 12(10), 2269. https://doi.org/10.3390/agronomy12102269
  • Li, J., Wu, T., Huang, K., Liu, Y., Liu, M., & Wang, J. (2021). Effect of LED spectrum on the quality and nitrogen metabolism of lettuce under recycled hydroponics. Frontiers in Plant Science, 12, 678197. https://doi.org/10.3389/fpls.2021.678197
  • Li, Y., Zheng, Y., Liu, H., Zhang, Y., Hao, Y., Song, S., & Lei, B. (2019). Effect of supplemental blue light intensity on the growth and quality of Chinese kale. Horticulture, Environment and Biotechnology, 60(1), 49–57. https://doi.org/10.1007/s13580-018-0104-1
  • Loconsole, D., Cocetta, G., Santoro, P., & Ferrante, A. (2019). Optimization of LED lighting and quality evaluation of romaine lettuce grown in an innovative indoor cultivation system. Sustainability, 11(3), 841. https://doi.org/10.3390/su11030841
  • Martin, M., & Molin, E. (2019). Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability, 11(15), 4124. https://doi.org/10.3390/su11154124
  • Metallo, R. M., Kopsell, D. A., Sams, C. E., & Bumgarner, N. R. (2018). Influence of blue/red vs. white LED light treatments on biomass, shoot morphology, and quality parameters of hydroponically grown kale. Scientia Horticulturae, 235, 189–197. https://doi.org/10.1016/j.scienta.2018.02.061
  • Nelson, J. A., Bugbee, B., & Campbell, D. A. (2014). Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. Public Library of Science One, 9(6), 99010. https://doi.org/10.1371/journal.pone.0099010
  • Nemali, K. (2022). History of controlled environment horticulture: Greenhouses. Hort Science, 57(2), 239–246. https://doi.org/10.21273/HORTSCI16160-21
  • Ngcobo, B. L., & Bertling, I. (2021). The effect of the postharvest red and blue LED light exposure on the quality of cherry tomato. VIII International Symposium on Human Health Effects of Fruits and Vegetables-FAVHEALTH 2021, Stuttgart, Germany, (Vol. 1329. pp. 181–187).
  • Ngcobo, B. L., & Bertling, I. (2023). An overview of the recent developments in the postharvest application of light-emitting diodes (LEDs) in horticulture. New Advances in Postharvest Technology, Intechopen. https://doi.org/10.5772/intechopen.109764
  • Ngcobo, B. L., Bertling, I., & Clulow, A. D. (2020a). Post-harvest alterations in quality and health-related parameters of cherry tomatoes at different maturity stages following irradiation with red and blue LED lights. The Journal of Horticultural Science and Biotechnology, 96(3), 383–391. https://doi.org/10.1080/14620316.2020.1847696
  • Ngcobo, B. L., Bertling, I., & Clulow, A. D. (2020b). Preharvest illumination of cherry tomato reduces ripening period, enhances fruit carotenoid concentration and overall fruit quality. The Journal of Horticultural Science and Biotechnology, 95(5), 617–627. https://doi.org/10.1080/14620316.2020.1743771
  • Ngcobo, B. L., Bertling, I., & Clulow, A. D. (2022). Artificial daylength enhancement (pre-sunrise and post-sunset) with blue and red led lights affects tomato plant development, yield, and fruit nutritional quality. Horticulture, Environment and Biotechnology, 63(6), 847–856. https://doi.org/10.1007/s13580-022-00447-1
  • Nguyen, T. K. L., Cho, K. M., Lee, H. Y., Cho, D. Y., Lee, G. O., Jang, S. N., Lee, Y., Kim, D., & Son, K. H. (2021). Effects of white LED lighting with specific shorter blue and/or green wavelength on the growth and quality of two lettuce cultivars in a vertical farming system. Agronomy, 11(11), 2111. https://doi.org/10.3390/agronomy11112111
  • Nguyen, T., Tran, T., & Nguyen, Q. (2019). Effects of light intensity on the growth, photosynthesis and leaf microstructure of hydroponic cultivated spinach (Spinacia oleracea L.) under a combination of red and blue LEDs in house. International Journal of Agricultural Technology, 15(1), 75–90.
  • Rahman, M. M., Vasiliev, M., & Alameh, K. (2021). LED Illumination spectrum manipulation for increasing the yield of sweet basil (Ocimum basilicum L.). Plants, 10(2), 344. https://doi.org/10.3390/plants10020344
  • Shao, M., Liu, W., Zha, L., Zhou, C., Zhang, Y., & Li, B. (2020). Differential effects of high light duration on growth, nutritional quality, and oxidative stress of hydroponic lettuce under red and blue LED irradiation. Scientia Horticulturae, 268, 109366. https://doi.org/10.1016/j.scienta.2020.109366
  • Sharath Kumar, M., Heuvelink, E., & Marcelis, L. F. (2020). Vertical farming: Moving from genetic to environmental modification. Trends in Plant Science, 25(8), 724–727. https://doi.org/10.1016/j.tplants.2020.05.012
  • Singh, D., Basu, C., Meinhardt-Wollweber, M., & Roth, B. (2015). Leds for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 49, 139–147. https://doi.org/10.1016/j.rser.2015.04.117
  • Smith, H. L., McAusland, L., & Murchie, E. H. (2017). Don’t ignore the green light: Exploring diverse roles in plant processes. Journal of Experimental Botany, 68(9), 2099–2110. https://doi.org/10.1093/jxb/erx098
  • Spaninks, K., Van Lieshout, J., Van Ieperen, W., & Offringa, R. (2020). Regulation of early plant development by red and blue light: A comparative analysis between Arabidopsis thaliana and Solanum lycopersicum. Frontiers in Plant Science, 11, 599982. https://doi.org/10.3389/fpls.2020.599982
  • Talukder, M. R., Asaduzzaman, M., Tanaka, H., & Asao, T. (2018). Light-emitting diodes and exogenous amino acids application improve growth and yield of strawberry plants cultivated in recycled hydroponics. Scientia Horticulturae, 239, 93–103. https://doi.org/10.1016/j.scienta.2018.05.033
  • Tan, W. K., Goenadie, V., Lee, H. W., Liang, X., Loh, C. S., Ong, C. N., & Tan, H. T. W. (2020). Growth and glucosinolate profiles of a common Asian green leafy vegetable, Brassica rapa subsp. chinensis var. parachinensis (choy sum), under LED lighting. Scientia Horticulturae, 261, 108922. https://doi.org/10.1016/j.scienta.2019.108922
  • UN. (2022). World population prospects 2022. Retrieved June 11, 2022, from. https://population.un.org/wpp/
  • Wang, S., Fang, H., Xie, J., Wu, Y., Tang, Z., Liu, Z., Lv, J., & Yu, J. (2021). Physiological responses of cucumber seedlings to different supplemental light duration of red and blue LED. Frontiers in Plant Science, 12, 709313. https://doi.org/10.3389/fpls.2021.709313
  • Yang, X., Xu, H., Shao, L., Li, T., Wang, Y., & Wang, R. (2018). Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environmental and Experimental Botany, 150, 161–171. https://doi.org/10.1016/j.envexpbot.2018.03.013
  • Yap, E. S. P., Uthairatanakij, A., Laohakunjit, N., Jitareerat, P., Vaswani, A., Magana, A. A., Morre, J., & Maier, C. S. (2021). Plant growth and metabolic changes in ‘Super HotSuper-Hot’chili fruit (Capsicum annuum) exposed to supplemental LED lights. Plant Science, 305, 110826. https://doi.org/10.1016/j.plantsci.2021.110826
  • Zhang, M., & Runkle, E. S. (2019). Regulating flowering and extension growth of poinsettia using red and far-red light-emitting diodes for end-of-day lighting. Hort Science, 54(2), 323–327. https://doi.org/10.21273/HORTSCI13630-18
  • Zhang, T., Shi, Y., Piao, F., & Sun, Z. (2018). Effects of different LED sources on the growth and nitrogen metabolism of lettuce. Plant Cell, Tissue & Organ Culture (PCTOC), 134(2), 231–240. https://doi.org/10.1007/s11240-018-1415-8
  • Zheng, L., He, H., & Song, W. (2019). Application of light-emitting diodes and the effect of light quality on horticultural crops: A review. Hort Science, 54(10), 1656–1661. https://doi.org/10.21273/HORTSCI14109-19
  • Zou, T., Wu, B., Wu, W., Ge, L., & Xu, Y. (2020). Effects of different spectra from LED on the growth, development and reproduction of arabidopsis thaliana. Phyton, 89(2), 275–289. https://doi.org/10.32604/phyton.2020.09277
  • Zushi, K., Suehara, C., & Shirai, M. (2020). Effect of light intensity and wavelengths on ascorbic acid content and the antioxidant system in tomato fruit grown in vitro. Scientia Horticulturae, 274, 109673. https://doi.org/10.1016/j.scienta.2020.109673