20
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Decrease of boron cross-linking ratio and morphological change in tomato plants under boron deficiency

, , , , &
Received 31 Jan 2024, Accepted 30 May 2024, Published online: 13 Jun 2024

References

  • Blevins, D. G., & Lukaszewski, K. M. (1998). Boron in plant structure and function. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 481–500. https://doi.org/10.1146/annurev.arplant.49.1.481
  • Brdar-Jokanović, M. (2020). Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences, 21(4), 1424. https://doi.org/10.3390/ijms21041424
  • Brown, P. H., & Shelp, B. J. (1997). Boron mobility in plants. Plant and Soil, 193(2), 85–101. https://doi.org/10.1023/A:1004211925160
  • Davis, J. M., Sanders, D., Nelson, P., Lengnick, L., & Sperry, W. (2003). Boron improves growth, yield, quality, and nutrient content of tomato. Journal of the American Society for Horticultural Science, 128(3), 441–446. https://doi.org/10.21273/JASHS.128.3.0441
  • Fryer, M. J., Oxborough, K., Mullineaux, P. M., & Baker, N. R. (2002). Imaging of photo-oxidative stress responses in leaves. Journal of Experimental Botany, 53(372), 1249–1254. https://doi.org/10.1093/jxb/53.372.1249
  • Guidi, L., Degl’innocenti, E., Carmassi, G., Massa, D., & Pardossi, A. (2011). Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water. Environmental and Experimental Botany, 73, 57–63. https://doi.org/10.1016/j.envexpbot.2010.09.017
  • Hajiboland, R., Farhanghi, F., & Aliasgharpour, M. (2012). Morphological and anatomical modifications in leaf, stem and roots of four plant species under boron deficiency conditions. Anales de Biología, 0(34), 15–29. https://doi.org/10.6018/analesbio.0.34.4
  • Koshiba, T., Kobayashi, M., & Matoh, T. (2009). Boron nutrition of tobacco BY-2 cells. v. oxidative damage is the major cause of cell death induced by boron deprivation. Plant and Cell Physiology, 50(1), 26–36. https://doi.org/10.1093/pcp/pcn184
  • Leroux, O. (2012). Collenchyma: A versatile mechanical tissue with dynamic cell walls. Annals of Botany, 10(6), 1083–1098. https://doi.org/10.1093/aob/mcs186
  • Li, M., Zhao, Z., Zhang, Z., Zhang, W., Zhou, J., Xu, F., & Liu, X. (2017). Effect of boron deficiency on anatomical structure and chemical composition of petioles and photosynthesis of leaves in cotton (Gossypium hirsutum L.). Scientific Reports, 7(1), 4420. https://doi.org/10.1038/s41598-017-04655-z
  • Maia, J. T. L. S., Martinez, H. E. P., Clemente, J. M., Ventrella, M. C., & Milagres, C. C. (2019). Growth, nutrient concentration, nutrient accumulation and visual symptoms of nutrient deficiencies in cherry tomato plants. Semina: Ciências Agrárias, Londrina, 40(2), 585–598. https://doi.org/10.5433/1679-0359.2019v40n2p585
  • Matsunaga, T., & Ishii, T. (2006). Borate cross-linked/total rhamnogalacturonan II ratio in cell walls for the biochemical diagnosis of boron deficiency in hydroponically grown pumpkin. Analytical Sciences, 22(8), 1125–1127. https://doi.org/10.2116/analsci.22.1125
  • Milagres, C. C., Maia, J. T. L. S., Ventrella, M. C., & Martinez, H. E. P. (2019). Anatomical changes in cherry tomato plants caused by boron deficiency. Brazilian Journal of Botany, 42(2), 319–328. https://doi.org/10.1007/s40415-019-00537-y
  • Miwa, K., & Fujiwara, T. (2010). Boron transport in plants: Co-ordinated regulation of transporters. Annals of Botany, 105(7), 1103–1108. https://doi.org/10.1093/aob/mcq044
  • O’Neill, M., Eberhard, S., Albersheim, P., & Darvill, A. (2001). Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science, 294(5543), 846–849. https://doi.org/10.1126/science.1062319
  • O’Neill, M. A., Ishii, T., Albersheim, P., & Darvill, A. G. (2004). Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annual Review of Plant Biology, 55(1), 109–139. https://doi.org/10.1146/annurev.arplant.55.031903.141750
  • Riaz, M., Yan, L., Wu, X., Hussain, S., Aziz, O., & Jiang, C. (2018). Boron deprivation induced inhibition of root elongation is provoked by oxidative damage, root injuries and changes in cell wall structure. Environmental and Experimental Botany, 156, 74–85. https://doi.org/10.1016/j.envexpbot.2018.08.032
  • Robertson, G. A., & Loughman, B. C. (1974). Response to boron deficiency: A comparison with responses produced by chemical methods of retarding root elongation. New Phytologist, 73(5), 821–832. https://doi.org/10.1111/j.1469-8137.1974.tb01310.x
  • Spurr, A. R. (1957). The effect of boron on cell-wall structure in celery. American Journal of Botany, 44(8), 637–650. https://doi.org/10.1002/j.1537-2197.1957.tb08244.x
  • Sturião, W. P., Martinez, H. E. P., Milagres, C. C., Lopes, I. P. C., Clemente, J. M., Ventrella, M. C., & Cecon, P. R. (2020). Boron lack affects the anatomy of leaf, stem and root of cherry tomato. Brazilian Journal of Botany, 43(2), 247–255. https://doi.org/10.1007/s40415-020-00605-8
  • Suzuki, K., Suzuki, D., Numajiri, M., Matsushiro, J., Yamane, M., & Kiriiwa, Y. (2019). Anatomical analysis of internally brown tomato fruit. The Horticulture Journal, 88(2), 263–269. https://doi.org/10.2503/hortj.UTD-040
  • Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal: For Cell and Molecular Biology, 11(6), 1187–1194. https://doi.org/10.1046/j.1365-313X.1997.11061187.x
  • Wimmer, M. A., & Eichert, T. (2013). Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science, 203–204, 25–32. https://doi.org/10.1016/j.plantsci.2012.12.012
  • Yamauchi, T., Hara, T., & Sonoda, Y. (1986). Distribution of calcium and boron in the pectin fraction of tomato leaf cell wall. Plant and Cell Physiology, 27(4), 729–732. https://doi.org/10.1093/oxfordjournals.pcp.a077155
  • Yan, L., Riaz, M., & Jiang, C. (2020). Exogenous application of proline alleviates B-deficiency-induced injury while aggravates aluminum toxicity in trifoliate orange seedlings. Scientia Horticulturae, 268, 109372. https://doi.org/10.1016/j.scienta.2020.109372
  • Zhang, Y., Kiriiwa, Y., & Nukaya, A. (2015). Influence of nutrient concentration and composition on the growth, uptake patterns of nutrient elements and fruit coloring disorder for tomatoes grown in extremely low-volume substrate. The Horticulture Journal, 84(1), 37–45. https://doi.org/10.2503/hortj.MI-003
  • Zhou, T., Hua, Y., & Xu, F. (2017). Involvement of reactive oxygen species and Ca2+ in the differential responses to low-boron in rapeseed genotypes. Plant and Soil, 419(1–2), 219–236. https://doi.org/10.1007/s11104-017-3337-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.