13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Screening and analysis of single nucleotide polymorphism in the 3′-UTR microRNA target regions and its implications for lung tumorigenesis

ORCID Icon, ORCID Icon & ORCID Icon
Received 26 Feb 2024, Accepted 13 May 2024, Published online: 30 May 2024

References

  • Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today. 2022. https://gco.iarc.fr/today
  • Komar AA. Single nucleotide polymorphisms. In: Methods in Molecular Biology. Switzerland, AG: Springer Nature; 2009; p. 578. doi:10.1007/978-1-60327-411-1
  • Cargill M, Altshuler D, Ireland J, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999;22(3):231–238. doi:10.1038/10290
  • Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077–1082. doi:10.1126/science.280.5366.107
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. doi:10.1016/S0092-8674(04)00045-5
  • Sood P, Krek A, Zavolan M, et al. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA. 2006;103(8):2746–2751. doi:10.1073/pnas.051104510
  • Nicoloso MS, Sun H, Spizzo R, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70(7):2789–2798. doi:10.1158/0008-5472.CAN-09-3541
  • Mayr C, Bartel DP. Widespread shortening of 3′-UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138(4):673–684. doi:10.1016/j.cell.2009.06.016
  • John B, Enright AJ, Aravin A, et al. Human microRNA targets. PLoS Boil. 2004;2(11):e363. doi:10.1371/journal.pbio.0020363
  • Magrane M. UniProt Knowledgebase: a hub of integrated protein data. Database. 2011:baar009. doi:10.1093/database/bar009
  • UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(D1):D204–212. doi:10.1093/nar/gku989
  • Liu C, Zhang F, Li T, et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genet. 2012;13(1):1–10. doi:10.1186/1471-2164-13-661
  • Chen L, Heikkinen L, Wang C, et al. Trends in the development of miRNA bioinformatics tools. Brief Bioinform. 2019;20(5):1836–1852. doi:10.1093/bib/bby054
  • Rykova E, Ershov N, Damarov I, et al. SNPs in 3′-UTR miRNA target sequences associated with individual drug susceptibility. Int J Mol Sci. 2022;23(22):13725. doi:10.3390/ijms232213725
  • LeDoux MS. Exome sequencing for gene discovery: time does not stand still. Ann Neurol. 2012;72(4):628. doi:10.1002/ana.23660
  • Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005. doi:10.7554/eLife.05005
  • Lorenz AR, Bernhart SH, Neubock R, et al. The vienna RNA websuite. Nucleic Acids Res. 2008;36(Suppl. 2):W70–74. doi:10.1093/nar/gkn188
  • Landi D, Barale R, Gemignani F, et al. Prediction of the biological effect of polymorphisms within microRNA binding sites. In: MicroRNA and Cancer: Methods and Protocols. Switzerland AG: Springer Nature; p. 197–210. doi:10.1007/978-1-60761-863-8_14
  • Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–607. doi:10.1038/nature11003
  • Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–658. doi:10.1016/j.neo.2017.05.002
  • GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–1330. doi:10.1126/science.aaz1776
  • Liao Y, Wang J, Jaehnig EJ, et al. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47(W1):W199–205. doi:10.1093/nar/gkz401
  • Bu D, Luo H, Huo P, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49(W1):W317–325. doi:10.1093/nar/gkab447
  • Montojo J, Zuberi K, Rodriguez H, et al. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics. 2010;26(22):2927–2928. doi:10.1093/bioinformatics/btq562
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303
  • Mostafavi S, Ray D, Warde-Farley D, et al. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008;9:1–5. doi:10.1186/gb-2008-9-s1-s4
  • Gennarino VA, D'Angelo G, Dharmalingam G, et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 2012;22(6):1163–1172. doi:10.1101/gr.130435.111
  • Nagy A, Munkácsy G, Györffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep. 2021;11(1):6047. doi:10.1038/s41598-021-84787-5
  • Betel D, Koppal A, Agius P, et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11:1–4. doi:10.1186/gb-2010-11-8-r90
  • Peedicayil J. Epigenetics and psychiatry. In: Sex, Gender, and Epigenetics. Academic Press; 2023; p. 139–152. doi:10.1016/B978-0-12-823937-7.00016-X
  • Chatterjee S, Pal JK. Role of 5′-and 3′-untranslated regions of mRNAs in human diseases. Biol Cell. 2009;101(5):251–262. doi:10.1042/BC20080104
  • International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52. doi:10.1038/nature09298
  • Chin LJ, Ratner E, Leng S, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non–small cell lung cancer risk. Cancer Res. 2008;68(20):8535–8540. doi:10.1158/0008-5472.CAN-08-2129
  • Manikandan M, Munirajan AK. Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics. Omics. 2014;18(2):142–154. doi:10.1089/omi.2013.0098
  • Siepel A, Bejerano G, Pedersen JS, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15(8):1034–1050. doi:10.1101/gr.3715005
  • Cooper GM, Stone EA, Asimenos G, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901–913. doi:10.1101/gr.3577405
  • Lee S, Hong JH, Kim JS, et al. Cancer-associated fibroblasts activated by miR-196a promote the migration and invasion of lung cancer cells. Cancer Lett. 2021;508:92–103. doi:10.1016/j.canlet.2021.03.021
  • Wu T, Chen W, Kong D, et al. miR-25 targets the modulator of apoptosis 1 gene in lung cancer. Carcinogenesis. 2017;36(8):925–935. doi:10.1093/carcin/bgv068
  • Othman N, Nagoor NH. miR-608 regulates apoptosis in human lung adenocarcinoma via regulation of AKT2. Int J Oncol. 2017;51(6):1757–1764. doi:10.3892/ijo.2017.4174
  • Heap GA, Trynka G, Jansen RC, et al. Complex nature of SNP genotype effects on gene expression in primary human leucocytes. BMC Med Genet. 2009;2:1. doi:10.1186/1755-8794-2-1
  • Kim S, Cho H, Lee D, et al. Association between SNPs and gene expression in multiple regions of the human brain. Transl Psychiatry. 2012;2:e113. doi:10.1038/tp.2012.42
  • Fu J, Wolfs MG, Deelen P, et al. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS Genet. 2012;8(1):e1002431. doi:10.1371/journal.pgen.1002431
  • Guo ZS, Qu Z. PDLIM2: signaling pathways and functions in cancer suppression and host immunity. BBA-Rev Cancer. 2021;1876(2):188630. doi:10.1016/j.bbcan.2021.188630
  • Moeller A, Kurzrock R, Botta GP, et al. Challenges and prospects of csf1r targeting for advanced Malignancies. Am J Cancer Res. 2023;13(7):3257.
  • Lin J, Zandi R, Shao R, et al. A miR-SNP biomarker linked to an increased lung cancer survival by miRNA-mediated down-regulation of FZD4 expression and Wnt signaling. Sci Rep. 2017;7:9029. doi:10.1038/s41598-017-09604-4
  • Hu Z, Chen J, Tian T, et al. Genetic variants of miRNA sequences and non–small cell lung cancer survival. J Clin Investig. 2008;118(7):2600–2608. doi:10.1172/JCI34934
  • Wani JA, Majid S, Imtiyaz Z, et al. MiRNAs in lung cancer: diagnostic, prognostic, and therapeutic potential. Diagnostics (Basel). 2022;12(7):1610. doi:10.3390/diagnostics12071610
  • Chin LJ, Ratner E, Leng S, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non–small cell lung cancer risk. Cancer Res. 2008;68(20):8535–8540. doi:10.1158/0008-5472.CAN-08-2129
  • Guang Y, Wenqi Z, Chunlei Y, et al. MicroRNA let-7: regulation, single nucleotide polymorphism, and therapy in lung cancer. J Cancer Res Ther. 2015;11(Suppl. 1):S1–S6. doi:10.4103/0973-1482.163830
  • Jiang W, Bi N, Zhang WJ, et al. MicroRNA-related polymorphisms in apoptosis pathway genes are predictive of clinical outcome in patients with limited disease small cell lung cancer. Oncotarget. 2016;7(16):22632–22638. doi:10.18632/oncotarget.8134
  • Fariha A, Hami I, Tonmoy MIQ, et al. Cell cycle-associated miRNAs as target and therapeutics in lung cancer treatment. Heliyon. 2022;8(10):e11081. doi:10.1016/j.heliyon.2022.e11081
  • Preskill C, Weidhaas JB. SNPs in microRNA binding sites as prognostic and predictive cancer biomarkers. Crit. Rev. Oncog. 2013;18(4):327–340. doi:10.1615/critrevoncog.2013007254
  • Guo C, Huang Y, Yu J, et al. The impacts of single nucleotide polymorphisms in genes of cell cycle and NF-kB pathways on the efficacy and acute toxicities of radiotherapy in patients with nasopharyngeal carcinoma. Oncotarget. 2017;8(15):25334–25344. doi:10.18632/oncotarget.15835
  • Dong Y, Wang X, Yang YW, et al. The effects of CDKN2A rs3731249, rs11515, and rs3088440 polymorphisms on cancer risk. Cell Mol Biol. 2017;63(3):40–44. doi:10.14715/cmb/2017.63.3.8
  • Mishra PJ, Mishra PJ, Banerjee D, et al. MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics. Cell Cycle. 2008;7(7):853–858. doi:10.4161/cc.7.7.5666

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.