Publication Cover
Human Fertility
an international, multidisciplinary journal dedicated to furthering research and promoting good practice
Volume 26, 2023 - Issue 3
276
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Endometrial compaction is associated with the increased live birth rate in artificial frozen-thawed embryo transfer cycles

, , , , , & show all
Pages 550-556 | Received 24 Feb 2021, Accepted 16 Jul 2021, Published online: 18 Aug 2021

References

  • Barker, M. A., Boehnlein, L. M., Kovacs, P., & Lindheim, S. R. (2009). Follicular and luteal phase endometrial thickness and echogenic pattern and pregnancy outcome in oocyte donation cycles. Journal of Assisted Reproduction and Genetics, 26(5), 243–249. https://doi.org/10.1007/s10815-009-9312-z
  • Bergh, P. A., & Navot, D. (1992). The impact of embryonic development and endometrial maturity on the timing of implantation. Fertility and Sterility, 58(3), 537–542. https://doi.org/10.1016/S0015-0282(16)55259-5
  • Bu, Z., & Sun, Y. (2015). The impact of endometrial thickness on the day of human chorionic gonadotrophin (hCG) administration on ongoing pregnancy rate in patients with different ovarian response. PLOS One, 10(12), e0145703. https://doi.org/10.1371/journal.pone.0145703
  • Bu, Z., Wang, K., Dai, W., & Sun, Y. (2016). Endometrial thickness significantly affects clinical pregnancy and live birth rates in frozen-thawed embryo transfer cycles. Gynecological Endocrinology, 32(7), 524–528. https://doi.org/10.3109/09513590.2015.1136616
  • Bu, Z., Yang, X., Song, L., Kang, B., & Sun, Y. (2019). The impact of endometrial thickness change after progesterone administration on pregnancy outcome in patients transferred with single frozen-thawed blastocyst. Reproductive Biology and Endocrinology, 17(1), 99. https://doi.org/10.1186/s12958-019-0545-0
  • Craciunas, L., Gallos, I., Chu, J., Bourne, T., Quenby, S., Brosens, J. J., & Coomarasamy, A. (2019). Conventional and modern markers of endometrial receptivity: A systematic review and meta-analysis. Human Reproduction Update, 25(2), 202–223. https://doi.org/10.1093/humupd/dmy044
  • Fleischer, A. C., Pittaway, D. E., Beard, L. A., Thieme, G. A., Bundy, A. L., James, A. E., Jr,., & Wentz, A. C. (1984). Sonographic depiction of endometrial changes occurring with ovulation induction. Journal of Ultrasound in Medicine, 3(8), 341–346. https://doi.org/10.7863/jum.1984.3.8.341
  • Forman, E. J. (2019). The receptive endometrium: The thinner the better? Fertility and Sterility, 112(3), 469–470. https://doi.org/10.1016/j.fertnstert.2019.05.037
  • Gardner, D. K., & Schoolcraft, W. B. (1999). In vitro culture of human blastocysts. In R. Jansen, & D. Mortimer (Eds.), Towards reproductive certainty: Infertility and genetics beyond (p. 378). Parthenon Press.
  • Griesinger, G., Trevisan, S., & Cometti, B. (2018). Endometrial thickness on the day of embryo transfer is a poor predictor of IVF treatment outcome. Human Reproduction Open, 2018(1), hox031. https://doi.org/10.1093/hropen/hox031
  • Haas, J., Smith, R., Zilberberg, E., Nayot, D., Meriano, J., Barzilay, E., & Casper, R. F. (2019). Endometrial compaction (decreased thickness) in response to progesterone results in optimal pregnancy outcome in frozen-thawed embryo transfers. Fertility and Sterility, 112(3), 503–509.e1. https://doi.org/10.1016/j.fertnstert.2019.05.001
  • Kasius, A., Smit, J. G., Torrance, H. L., Eijkemans, M. J., Mol, B. W., Opmeer, B. C., & Broekmans, F. J. (2014). Endometrial thickness and pregnancy rates after IVF: A systematic review and meta-analysis. Human Reproduction Update, 20(4), 530–541. https://doi.org/10.1093/humupd/dmu011
  • Kossoff, G., Griffiths, K. A., & Dixon, C. E. (1991). Is the quality of transvaginal images superior to transabdominal ones under matched conditions? Ultrasound in Obstetrics & Gynecology, 1(1), 29–35. https://doi.org/10.1046/j.1469-0705.1991.01010029.x
  • Liu, K. E., Hartman, M., Hartman, A., Luo, Z. C., & Mahutte, N. (2018). The impact of a thin endometrial lining on fresh and frozen-thaw IVF outcomes: an analysis of over 40 000 embryo transfers. Human Reproduction, 33(10), 1883–1888. https://doi.org/10.1093/humrep/dey281
  • Li, X., Feng, Y., Lin, J. F., Billig, H., & Shao, R. (2014). Endometrial progesterone resistance and PCOS. Journal of Biomedical Science, 21(1), 2. https://doi.org/10.1186/1423-0127-21-2
  • Noyes, R. W., Hertig, A. T., & Rock, J. (1950). Dating the endometrial biopsy. Fertility and Sterility, 1(1), 3–25. https://doi.org/10.1016/S0015-0282(16)30062-0
  • Patel, B. G., Rudnicki, M., Yu, J., Shu, Y., & Taylor, R. N. (2017). Progesterone resistance in endometriosis: origins, consequences and interventions. Acta Obstetricia et Gynecologica Scandinavica, 96(6), 623–632. https://doi.org/10.1111/aogs.13156
  • Raine-Fenning, N. J., Campbell, B. K., Clewes, J. S., Kendall, N. R., & Johnson, I. R. (2004). Defining endometrial growth during the menstrual cycle with three-dimensional ultrasound. BJOG, 111(9), 944–949. https://doi.org/10.1111/j.1471-0528.2004.00214.x
  • Van Royen, E., Mangelschots, K., De Neubourg, D., Valkenburg, M., Van de Meerssche, M., Ryckaert, G., Eestermans, W., & Gerris, J. (1999). Characterization of a top quality embryo, a step towards single-embryo transfer. Human Reproduction, 14(9), 2345–2349. https://doi.org/10.1093/humrep/14.9.2345
  • Wang, Z. M. (1993). Transvaginal ultrasonographic monitoring on the morphological changes of ovary and endometrium during normal menstrual cycle. Zhonghua Fu Chan Ke Za Zhi, 28(1), 18–59.
  • Yang, W., Zhang, T., Li, Z., Ren, X., Huang, B., Zhu, G., & Jin, L. (2018). Combined analysis of endometrial thickness and pattern in predicting clinical outcomes of frozen embryo transfer cycles with morphological good-quality blastocyst: A retrospective cohort study. Medicine, 97(2), e9577. https://doi.org/10.1097/MD.0000000000009577
  • Zilberberg, E., Nayot, D., Smith, R. G., Meriano, J., Barzilay, E., Haas, J., & Casper, R. F. (2019). Endometrial compaction (decreased thickness) in response to progesterone results in higher ongoing pregnancy rate. Fertility and Sterility, 112(3), e89–e90. https://doi.org/10.1016/j.fertnstert.2019.07.355

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.