Publication Cover
Human Fertility
an international, multidisciplinary journal dedicated to furthering research and promoting good practice
Volume 26, 2023 - Issue 4: China Issue
264
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Application of artificial intelligence in gametes and embryos selection

, ORCID Icon &
Pages 757-777 | Received 28 Feb 2023, Accepted 22 Jul 2023, Published online: 14 Sep 2023

References

  • Abbasi, A., Miahi, E., & Mirroshandel, S. A. (2021). Effect of deep transfer and multi-task learning on sperm abnormality detection. Computers in Biology and Medicine, 128, 104121. https://doi.org/10.1016/j.compbiomed.2020.104121
  • Abhari, S., & Kawwass, J. F. (2021). Pregnancy and neonatal outcomes after transfer of mosaic embryos: A review. Journal of Clinical Medicine, 10(7), 1369. https://doi.org/10.3390/jcm10071369
  • Agarwal, A., Baskaran, S., Parekh, N., Cho, C.-L., Henkel, R., Vij, S., Arafa, M., Panner Selvam, M. K., & Shah, R. (2021). Male infertility. Lancet, 397(10271), 319–333. https://doi.org/10.1016/S0140-6736(20)32667-2
  • Agarwal, A., Henkel, R., Huang, C.-C., & Lee, M.-S. (2019). Automation of human semen analysis using a novel artificial intelligence optical microscopic technology. Andrologia, 51(11), e13440. https://doi.org/10.1111/and.13440
  • Agarwal, A., Panner Selvam, M. K., Sharma, R., Master, K., Sharma, A., Gupta, S., & Henkel, R. (2018). Home sperm testing device versus laboratory sperm quality analyzer: Comparison of motile sperm concentration. Fertility and Sterility, 110(7), 1277–1284. https://doi.org/10.1016/j.fertnstert.2018.08.049
  • Alegre, L., Bori, L., Valera, M., de los, Á., Gouveia Nogueira, M. F., Ferreira, A. S., Rocha, J. C., & Meseguer, M. (2020). First application of artificial neuronal networks for human live birth prediction on geri time-lapse monitoring system blastocyst images. Fertility and Sterility, 114(3), e140. https://doi.org/10.1016/j.fertnstert.2020.08.414
  • Alegre, L., Del Gallego, R., Bori, L., Loewke, K., Maddah, M., Aparicio-Ruiz, B., Palma-Govea, A. P., Marcos, J., & Meseguer, M. (2021). Assessment of embryo implantation potential with a cloud-based automatic software. Reproductive Biomedicine Online, 42(1), 66–74. https://doi.org/10.1016/j.rbmo.2020.09.032
  • Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. (2011). The Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Human Reproduction, 26(6), 1270–1283. https://doi.org/10.1093/humrep/der037
  • Bamford, T., Barrie, A., Montgomery, S., Dhillon-Smith, R., Campbell, A., Easter, C., & Coomarasamy, A. (2022). Morphological and morphokinetic associations with aneuploidy: A systematic review and meta-analysis. Human Reproduction Update, 28(5), 656–686. https://doi.org/10.1093/humupd/dmac022
  • Berntsen, J., Rimestad, J., Lassen, J. T., Tran, D., & Kragh, M. F. (2022). Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences. PLOS One, 17(2), e0262661. https://doi.org/10.1371/journal.pone.0262661
  • Bori, L., Dominguez, F., Fernandez, E. I., Del Gallego, R., Alegre, L., Hickman, C., Quiñonero, A., Nogueira, M. F. G., Rocha, J. C., & Meseguer, M. (2021). An artificial intelligence model based on the proteomic profile of euploid embryos and blastocyst morphology: A preliminary study. Reproductive Biomedicine Online, 42(2), 340–350. https://doi.org/10.1016/j.rbmo.2020.09.031
  • Bori, L., Paya, E., Alegre, L., Viloria, T. A., Remohi, J. A., Naranjo, V., & Meseguer, M. (2020). Novel and conventional embryo parameters as input data for artificial neural networks: An artificial intelligence model applied for prediction of the implantation potential. Fertility and Sterility, 114(6), 1232–1241. https://doi.org/10.1016/j.fertnstert.2020.08.023
  • Bormann, C. L., Kanakasabapathy, M. K., Thirumalaraju, P., Gupta, R., Pooniwala, R., Kandula, H., Hariton, E., Souter, I., Dimitriadis, I., Ramirez, L. B., Curchoe, C. L., Swain, J., Boehnlein, L. M., & Shafiee, H. (2020). Performance of a deep learning based neural network in the selection of human blastocysts for implantation. eLife, 9, e55301. https://doi.org/10.7554/eLife.55301
  • Cavalera, F., Zanoni, M., Merico, V., Bui, T. T. H., Belli, M., Fassina, L., Garagna, S., & Zuccotti, M. (2018). A neural network-based identification of developmentally competent or incompetent mouse fully-grown oocytes. Journal of Visualized Experiments, (133), e56668: 1–5. https://doi.org/10.3791/56668
  • Chavez-Badiola, A., Flores-Saiffe Farias, A., Mendizabal-Ruiz, G., Garcia-Sanchez, R., Drakeley, A. J., & Garcia-Sandoval, J. P. (2020). Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning. Scientific Reports, 10(1), 4394. https://doi.org/10.1038/s41598-020-61357-9
  • Chavez-Badiola, A., Flores-Saiffe-Farías, A., Mendizabal-Ruiz, G., Drakeley, A. J., & Cohen, J. (2020). Embryo Ranking Intelligent Classification Algorithm (ERICA): Artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reproductive Biomedicine Online, 41(4), 585–593. https://doi.org/10.1016/j.rbmo.2020.07.003
  • Chen, L., Li, W., Liu, Y., Peng, Z., Cai, L., Zhang, N., Xu, J., Wang, L., Teng, X., Yao, Y., Zou, Y., Ma, M., Liu, J., Lu, S., Sun, H., & Yao, B. (2022). Non-invasive embryo selection strategy for clinical IVF to avoid wastage of potentially competent embryos. Reproductive Biomedicine Online, 45(1), 26–34. https://doi.org/10.1016/j.rbmo.2022.03.006
  • Chen, T., Cheng, Y., Wang, J., Yang, Z., Zheng, W., Chen, D. Z., & Wu, J. (2022). Automating blastocyst formation and quality prediction in time-lapse imaging with adaptive key frame selection. In L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, & S. Li (Eds.), Medical image computing and computer assisted intervention – MICCAI 2022 (Vol. 13434, pp. 445–455). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-16440-8_43
  • Chen, T.-J., Zheng, W.-L., Liu, C.-H., Huang, I., Lai, H.-H., & Liu, M. (2019). Using deep learning with large dataset of microscope images to develop an automated embryo grading system. Fertility & Reproduction, 01(01), 51–56. https://doi.org/10.1142/S2661318219500051
  • Coticchio, G., Fiorentino, G., Nicora, G., Sciajno, R., Cavalera, F., Bellazzi, R., Garagna, S., Borini, A., & Zuccotti, M. (2021). Cytoplasmic movements of the early human embryo: Imaging and artificial intelligence to predict blastocyst development. Reproductive Biomedicine Online, 42(3), 521–528. https://doi.org/10.1016/j.rbmo.2020.12.008
  • Diakiw, S. M., Hall, J. M. M., VerMilyea, M. D., Amin, J., Aizpurua, J., Giardini, L., Briones, Y. G., Lim, A. Y. X., Dakka, M. A., Nguyen, T. V., Perugini, D., & Perugini, M. (2022). Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Human Reproduction, 37(8), deac131–1759. https://doi.org/10.1093/humrep/deac131
  • Dimitriadis, I., Bormann, C. L., Thirumalaraju, P., Kanakasabapathy, M., Gupta, R., Pooniwala, R., Souter, I., Hsu, J. Y., Rice, S. T., Bhowmick, P., & Shafiee, H. (2019). Artificial intelligence-enabled system for embryo classification and selection based on image analysis. Fertility and Sterility, 111(4), e21. https://doi.org/10.1016/j.fertnstert.2019.02.064
  • Dirvanauskas, D., Maskeliunas, R., Raudonis, V., & Damasevicius, R. (2019). Embryo development stage prediction algorithm for automated time lapse incubators. Computer Methods and Programs in Biomedicine, 177, 161–174. https://doi.org/10.1016/j.cmpb.2019.05.027
  • Enatsu, N., Miyatsuka, I., An, L. M., Inubushi, M., Enatsu, K., Otsuki, J., Iwasaki, T., Kokeguchi, S., & Shiotani, M. (2022). A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation. Reproductive Medicine and Biology, 21(1), e12443. https://doi.org/10.1002/rmb2.12443
  • Finelli, R., Leisegang, K., Tumallapalli, S., Henkel, R., & Agarwal, A. (2021). The validity and reliability of computer-aided semen analyzers in performing semen analysis: A systematic review. Translational Andrology and Urology, 10(7), 3069–3079. https://doi.org/10.21037/tau-21-276
  • Firuzinia, S., Afzali, S. M., Ghasemian, F., & Mirroshandel, S. A. (2021). A robust deep learning-based multiclass segmentation method for analyzing human metaphase II oocyte images. Computer Methods and Programs in Biomedicine, 201, 105946. https://doi.org/10.1016/j.cmpb.2021.105946
  • Fitz, V. W., Kanakasabapathy, M. K., Thirumalaraju, P., Kandula, H., Ramirez, L. B., Boehnlein, L., Swain, J. E., Curchoe, C. L., James, K., Dimitriadis, I., Souter, I., Bormann, C. L., & Shafiee, H. (2021). Should there be an “AI” in TEAM? Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm. Journal of Assisted Reproduction and Genetics, 38(10), 2663–2670. https://doi.org/10.1007/s10815-021-02318-7
  • Giscard d‘Estaing, S., Labrune, E., Forcellini, M., Edel, C., Salle, B., Lornage, J., & Benchaib, M. (2021). A machine learning system with reinforcement capacity for predicting the fate of an ART embryo. Systems Biology in Reproductive Medicine, 67(1), 64–78. https://doi.org/10.1080/19396368.2020.1822953
  • Goodson, S. G., White, S., Stevans, A. M., Bhat, S., Kao, C.-Y., Jaworski, S., Marlowe, T. R., Kohlmeier, M., McMillan, L., Zeisel, S. H., & O'Brien, D. A. (2017). CASAnova: A multiclass support vector machine model for the classification of human sperm motility patterns. Biology of Reproduction, 97(5), 698–708. https://doi.org/10.1093/biolre/iox120
  • Hariharan, R., He, P., Meseguer, M., Toschi, M., Rocha, J. C., Zaninovic, N., Malmsten, J., Zhan, Q., & Hickman, C. (2019). Artificial intelligence assessment of time-lapse images can predict with 77% accuracy whether a human embryo capable of achieving a pregnancy will miscarry. Fertility and Sterility, 112(3), e38–e39. https://doi.org/10.1016/j.fertnstert.2019.07.230
  • He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36. https://doi.org/10.1038/s41591-018-0307-0
  • Hernández-González, J., Inza, I., Crisol-Ortíz, L., Guembe, M. A., Iñarra, M. J., & Lozano, J. A. (2018). Fitting the data from embryo implantation prediction: Learning from label proportions. Statistical Methods in Medical Research, 27(4), 1056–1066. https://doi.org/10.1177/0962280216651098
  • Hicks, S. A., Andersen, J. M., Witczak, O., Thambawita, V., Halvorsen, P., Hammer, H. L., Haugen, T. B., & Riegler, M. A. (2019). Machine learning-based analysis of sperm videos and participant data for male fertility prediction. Scientific Reports, 9(1), 16770. https://doi.org/10.1038/s41598-019-53217-y
  • Huang, B., Tan, W., Li, Z., & Jin, L. (2021). An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data. Reproductive Biology and Endocrinology, 19(1), 185. https://doi.org/10.1186/s12958-021-00864-4
  • Huang, B., Zheng, S., Ma, B., Yang, Y., Zhang, S., & Jin, L. (2022). Using deep learning to predict the outcome of live birth from more than 10,000 embryo data. BMC Pregnancy and Childbirth, 22(1), 36. https://doi.org/10.1186/s12884-021-04373-5
  • Ilhan, H. O., Sigirci, I. O., Serbes, G., & Aydin, N. (2020). A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods. Medical & Biological Engineering & Computing, 58(5), 1047–1068. https://doi.org/10.1007/s11517-019-02101-y
  • Iqbal, I., Mustafa, G., & Ma, J. (2020). Deep learning-based morphological classification of human sperm heads. Diagnostics, 10(5), E325. https://doi.org/10.3390/diagnostics10050325
  • Javadi, S., & Mirroshandel, S. A. (2019). A novel deep learning method for automatic assessment of human sperm images. Computers in Biology and Medicine, 109, 182–194. https://doi.org/10.1016/j.compbiomed.2019.04.030
  • Kanakasabapathy, M., Dimitriadis, I., Thirumalaraju, P., Bormann, C. L., Souter, I., Hsu, J., Thatcher, M. L., Veiga, C., & Shafiee, H. (2019). An inexpensive, automated artificial intelligence (AI) system for human embryo morphology evaluation and transfer selection. Fertility and Sterility, 111(4), e11. https://doi.org/10.1016/j.fertnstert.2019.02.047
  • Kanakasabapathy, M. K., Thirumalaraju, P., Bormann, C. L., Kandula, H., Dimitriadis, I., Souter, I., Yogesh, V., Kota Sai Pavan, S., Yarravarapu, D., Gupta, R., Pooniwala, R., & Shafiee, H. (2019). Development and evaluation of inexpensive automated deep learning-based imaging systems for embryology. Lab on a Chip, 19(24), 4139–4145. https://doi.org/10.1039/c9lc00721k
  • Khalife, D., Abu-Musa, A., Khalil, A., & Ghazeeri, G. (2021). Towards the selection of embryos with the greatest implantation potential. Journal of Obstetrics and Gynaecology, 41(7), 1010–1015. https://doi.org/10.1080/01443615.2020.1835842
  • Khosravi, P., Kazemi, E., Zhan, Q., Malmsten, J. E., Toschi, M., Zisimopoulos, P., Sigaras, A., Lavery, S., Cooper, L. A. D., Hickman, C., Meseguer, M., Rosenwaks, Z., Elemento, O., Zaninovic, N., & Hajirasouliha, I. (2019). Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digital Medicine, 2(1), 21. https://doi.org/10.1038/s41746-019-0096-y
  • Kobori, Y., Pfanner, P., Prins, G. S., & Niederberger, C. (2016). Novel device for male infertility screening with single-ball lens microscope and smartphone. Fertility and Sterility, 106(3), 574–578. https://doi.org/10.1016/j.fertnstert.2016.05.027
  • Kragh, M. F., Rimestad, J., Berntsen, J., & Karstoft, H. (2019). Automatic grading of human blastocysts from time-lapse imaging. Computers in Biology and Medicine, 115, 103494. https://doi.org/10.1016/j.compbiomed.2019.103494
  • Leahy, B. D., Jang, W.-D., Yang, H. Y., Struyven, R., Wei, D., Sun, Z., Lee, K. R., Royston, C., Cam, L., Kalma, Y., Azem, F., Ben-Yosef, D., Pfister, H., & Needleman, D. (2020). Automated measurements of key morphological features of human embryos for IVF. Medical Image Computing and Computer-Assisted Intervention, 12265, 25–35. https://doi.org/10.1007/978-3-030-59722-1_3
  • Lesani, A., Kazemnejad, S., Moghimi Zand, M., Azadi, M., Jafari, H., Mofrad, M. R. K., & Nosrati, R. (2020). Quantification of human sperm concentration using machine learning-based spectrophotometry. Computers in Biology and Medicine, 127, 104061. https://doi.org/10.1016/j.compbiomed.2020.104061
  • Letort, G., Eichmuller, A., Da Silva, C., Nikalayevich, E., Crozet, F., Salle, J., Minc, N., Labrune, E., Wolf, J.-P., Terret, M.-E., & Verlhac, M.-H. (2022). An interpres and versatile machine learning approach for oocyte phenotyping. Journal of Cell Science, 135(13), jcs.260281. https://doi.org/10.1242/jcs.260281
  • Liang, B., Gao, Y., Xu, J., Song, Y., Xuan, L., Shi, T., Wang, N., Hou, Z., Zhao, Y.-L., Huang, W. E., & Chen, Z.-J. (2019). Raman profiling of embryo culture medium to identify aneuploid and euploid embryos. Fertility and Sterility, 111(4), 753–762.e1. https://doi.org/10.1016/j.fertnstert.2018.11.036
  • Liao, Q., Zhang, Q., Feng, X., Huang, H., Xu, H., Tian, B., Liu, J., Yu, Q., Guo, N., Liu, Q., Huang, B., Ma, D., Ai, J., Xu, S., & Li, K. (2021). Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring. Communications Biology, 4(1), 415. https://doi.org/10.1038/s42003-021-01937-1
  • Liu, G., Shi, H., Zhang, H., Zhou, Y., Sun, Y., Li, W., Huang, X., Jiang, Y., Fang, Y., & Yang, G. (2022). Fast noninvasive morphometric characterization of free human sperms using deep learning. Microscopy and Microanalysis, 7, 1–13. https://doi.org/10.1017/S1431927622012132
  • Liu, Z., Huang, B., Cui, Y., Xu, Y., Zhang, B., Zhu, L., Wang, Y., Jin, L., & Wu, D. (2019). Multi-task deep learning with dynamic programming for embryo early development stage classification from time-lapse videos. IEEE Access. 7, 122153–122163. https://doi.org/10.1109/ACCESS.2019.2937765
  • Loewke, K., Cho, J. H., Brumar, C. D., Maeder-York, P., Barash, O., Malmsten, J. E., Zaninovic, N., Sakkas, D., Miller, K. A., Levy, M., & VerMilyea, M. D. (2022). Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos. Fertility and Sterility, 117(3), 528–535. https://doi.org/10.1016/j.fertnstert.2021.11.022
  • Louis, C. M., Erwin, A., Handayani, N., Polim, A. A., Boediono, A., & Sini, I. (2021). Review of computer vision application in in vitro fertilization: The application of deep learning-based computer vision technology in the world of IVF. Journal of Assisted Reproduction and Genetics, 38(7), 1627–1639. https://doi.org/10.1007/s10815-021-02123-2
  • Lundin, K., & Park, H. (2020). Time-lapse technology for embryo culture and selection. Upsala Journal of Medical Sciences, 125(2), 77–84. https://doi.org/10.1080/03009734.2020.1728444
  • Malmsten, J., Zaninovic, N., Zhan, Q., Rosenwaks, Z., & Shan, J. (2021). Automated cell division classification in early mouse and human embryos using convolutional neural networks. Neural Computing and Applications, 33(7), 2217–2228. https://doi.org/10.1007/s00521-020-05127-8
  • Marín, R., & Chang, V. (2021). Impact of transfer learning for human sperm segmentation using deep learning. Computers in Biology and Medicine, 136, 104687. https://doi.org/10.1016/j.compbiomed.2021.104687
  • McCallum, C., Riordon, J., Wang, Y., Kong, T., You, J. B., Sanner, S., Lagunov, A., Hannam, T. G., Jarvi, K., & Sinton, D. (2019). Deep learning-based selection of human sperm with high DNA integrity. Communications Biology, 2(1), 250. https://doi.org/10.1038/s42003-019-0491-6
  • Meseguer Escriva, M. M., Zaninovic, N., Marcelo, F. G. N., Oliana, O., Wilkinson, T., Benham-Whyte, L., Lavery, S., Hickman, C., & Rocha, J. C. (2018). Using artificial intelligence (AI) and time-lapse to improve human blastocyst morphology evaluation. Human Reproduction, 33(suppl_1), i125–i126 (Abstracts of the 34rd Annual Meeting of the European Society of Human Reproduction and Embryology). https://doi.org/10.1093/humrep/33.Supplement_1.1
  • Milewski, R., Kuczyńska, A., Stankiewicz, B., & Kuczyński, W. (2017). How much information about embryo implantation potential is included in morphokinetic data? A prediction model based on artificial neural networks and principal component analysis. Advances in Medical Sciences, 62(1), 202–206. https://doi.org/10.1016/j.advms.2017.02.001
  • Mirroshandel, S. A., Ghasemian, F., & Monji-Azad, S. (2016). Applying data mining techniques for increasing implantation rate by selecting best sperms for intra-cytoplasmic sperm injection treatment. Computer Methods and Programs in Biomedicine, 137, 215–229. https://doi.org/10.1016/j.cmpb.2016.09.013
  • Miyagi, Y., Habara, T., Hirata, R., & Hayashi, N. (2019a). Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age. Reproductive Medicine and Biology, 18(2), 190–203. https://doi.org/10.1002/rmb2.12266
  • Miyagi, Y., Habara, T., Hirata, R., & Hayashi, N. (2019b). Feasibility of predicting live birth by combining conventional embryo evaluation with artificial intelligence applied to a blastocyst image in patients classified by age. Reproductive Medicine and Biology, 18(4), 344–356. https://doi.org/10.1002/rmb2.12284
  • Mortimer, D., Mortimer, S., & Horst, G. d (2015). The future of computer-aided sperm analysis. Asian Journal of Andrology, 17(4), 545. https://doi.org/10.4103/1008-682X.154312
  • Movahed, R. A., Mohammadi, E., & Orooji, M. (2019). Automatic segmentation of Sperm’s parts in microscopic images of human semen smears using concatenated learning approaches. Computers in Biology and Medicine, 109, 242–253. https://doi.org/10.1016/j.compbiomed.2019.04.032
  • Munné, S., Spinella, F., Grifo, J., Zhang, J., Beltran, M. P., Fragouli, E., & Fiorentino, F. (2020). Clinical outcomes after the transfer of blastocysts characterized as mosaic by high resolution next generation sequencing- further insights. European Journal of Medical Genetics, 63(2), 103741. https://doi.org/10.1016/j.ejmg.2019.103741
  • Payá, E., Bori, L., Colomer, A., Meseguer, M., & Naranjo, V. (2022). Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques. Computer Methods and Programs in Biomedicine, 221, 106895. https://doi.org/10.1016/j.cmpb.2022.106895
  • Pierré, W., Hervé, L., Paviolo, C., Mandula, O., Remondiere, V., Morales, S., Grudinin, S., Ray, P. F., Dhellemmes, M., Arnoult, C., & Allier, C. (2022). 3D time-lapse imaging of a mouse embryo using intensity diffraction tomography embedded inside a deep learning framework. Applied Optics, 61(12), 3337–3348. https://doi.org/10.1364/AO.453910
  • Raudonis, V., Paulauskaite-Taraseviciene, A., Sutiene, K., & Jonaitis, D. (2019). Towards the automation of early-stage human embryo development detection. BioMedical Engineering OnLine, 18(1), 120. https://doi.org/10.1186/s12938-019-0738-y
  • Riegler, M. A., Stensen, M. H., Witczak, O., Andersen, J. M., Hicks, S. A., Hammer, H. L., Delbarre, E., Halvorsen, P., Yazidi, A., Holst, N., & Haugen, T. B. (2021). Artificial intelligence in the fertility clinic: Status, pitfalls and possibilities. Human Reproduction, 36(9), 2429–2442. https://doi.org/10.1093/humrep/deab168
  • Riordon, J., McCallum, C., & Sinton, D. (2019). Deep learning for the classification of human sperm. Computers in Biology and Medicine, 111, 103342. https://doi.org/10.1016/j.compbiomed.2019.103342
  • Rosenwaks, Z. (2020). Artificial intelligence in reproductive medicine: A fleeting concept or the wave of the future? Fertility and Sterility, 114(5), 905–907. https://doi.org/10.1016/j.fertnstert.2020.10.002
  • Sato, T., Kishi, H., Murakata, S., Hayashi, Y., Hattori, T., Nakazawa, S., Mori, Y., Hidaka, M., Kasahara, Y., Kusuhara, A., Hosoya, K., Hayashi, H., & Okamoto, A. (2022). A new deep-learning model using YOLOv3 to support sperm selection during intracytoplasmic sperm injection procedure. Reproductive Medicine and Biology, 21(1), e12454. https://doi.org/10.1002/rmb2.12454
  • Sawada, Y., Sato, T., Nagaya, M., Saito, C., Yoshihara, H., Banno, C., Matsumoto, Y., Matsuda, Y., Yoshikai, K., Sawada, T., Ukita, N., & Sugiura-Ogasawara, M. (2021). Evaluation of artificial intelligence using time-lapse images of IVF embryos to predict live birth. Reproductive Biomedicine Online, 43(5), 843–852. https://doi.org/10.1016/j.rbmo.2021.05.002
  • Senders, J. T., Zaki, M. M., Karhade, A. V., Chang, B., Gormley, W. B., Broekman, M. L., Smith, T. R., & Arnaout, O. (2018). An introduction and overview of machine learning in neurosurgical care. Acta Neurochirurgica, 160(1), 29–38. https://doi.org/10.1007/s00701-017-3385-8
  • Sfakianoudis, K., Maziotis, E., Grigoriadis, S., Pantou, A., Kokkini, G., Trypidi, A., Giannelou, P., Zikopoulos, A., Angeli, I., Vaxevanoglou, T., Pantos, K., & Simopoulou, M. (2022). Reporting on the value of artificial intelligence in predicting the optimal embryo for transfer: A systematic review including data synthesis. Biomedicines, 10(3), 697. https://doi.org/10.3390/biomedicines10030697
  • Spinella, F., Fiorentino, F., Biricik, A., Bono, S., Ruberti, A., Cotroneo, E., Baldi, M., Cursio, E., Minasi, M. G., & Greco, E. (2018). Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertility and Sterility, 109(1), 77–83. https://doi.org/10.1016/j.fertnstert.2017.09.025
  • Targosz, A., Przystałka, P., Wiaderkiewicz, R., & Mrugacz, G. (2021). Semantic segmentation of human oocyte images using deep neural networks. BioMedical Engineering OnLine, 20(1), 40. https://doi.org/10.1186/s12938-021-00864-w
  • Thirumalaraju, P., Hsu, J. Y., Bormann, C. L., Kanakasabapathy, M., Souter, I., Dimitriadis, I., Dickinson, K. A., Pooniwala, R., Gupta, R., Yogesh, V., & Shafiee, H. (2019). Deep learning-enabled blastocyst prediction system for cleavage stage embryo selection. Fertility and Sterility, 111(4), e29. https://doi.org/10.1016/j.fertnstert.2019.02.077
  • Tran, A., Cooke, S., Illingworth, P. J., & Gardner, D. K. (2018). Artificial intelligence as a novel approach for embryo selection. Fertility and Sterility, 110(4), e430. https://doi.org/10.1016/j.fertnstert.2018.08.034
  • Tran, D., Cooke, S., Illingworth, P. J., & Gardner, D. K. (2019). Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Human Reproduction (Oxford, England), 34(6), 1011–1018. https://doi.org/10.1093/humrep/dez064
  • Tsai, V. F., Zhuang, B., Pong, Y.-H., Hsieh, J.-T., & Chang, H.-C. (2020). Web- and artificial intelligence-based image recognition for sperm motility analysis: Verification study. JMIR Medical Informatics, 8(11), e20031. https://doi.org/10.2196/20031
  • Ueno, S., Berntsen, J., Ito, M., Uchiyama, K., Okimura, T., Yabuuchi, A., & Kato, K. (2021). Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: A single-center large cohort retrospective study. Fertility and Sterility, 116(4), 1172–1180. https://doi.org/10.1016/j.fertnstert.2021.06.001
  • Valiuškaitė, V., Raudonis, V., Maskeliūnas, R., Damaševičius, R., & Krilavičius, T. (2020). Deep learning based evaluation of spermatozoid motility for artificial insemination. Sensors, 21(1), 72. https://doi.org/10.3390/s21010072
  • VerMilyea, M., Hall, J. M. M., Diakiw, S. M., Johnston, A., Nguyen, T., Perugini, D., Miller, A., Picou, A., Murphy, A. P., & Perugini, M. (2020). Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Human Reproduction, 35(4), 770–784. https://doi.org/10.1093/humrep/deaa013
  • Wang, Y., Riordon, J., Kong, T., Xu, Y., Nguyen, B., Zhong, J., You, J. B., Lagunov, A., Hannam, T. G., Jarvi, K., & Sinton, D. (2019). Prediction of DNA integrity from morphological parameters using a single-sperm DNA fragmentation index assay. Advanced Science, 6(15), 1900712. https://doi.org/10.1002/advs.201900712
  • Wen, J.-Y., Liu, C.-F., Chung, M.-T., & Tsai, Y.-C. (2022). Artificial intelligence model to predict pregnancy and multiple pregnancy risk following in vitro fertilization-embryo transfer (IVF-ET). Taiwanese Journal of Obstetrics & Gynecology, 61(5), 837–846. https://doi.org/10.1016/j.tjog.2021.11.038
  • Wilkinson, J., Bhattacharya, S., Duffy, J., Kamath, M. S., Marjoribanks, J., Repping, S., Vail, A., van Wely, M., & Farquhar, C. M. (2019). Reproductive medicine: Still more ART than science? British Journal of Obstetrics and Gynaecology, 126(2), 138–141. https://doi.org/10.1111/1471-0528.15409
  • World Health Organization & UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction. (2022). HRP annual report 2021. World Health Organization. https://apps.who.int/iris/handle/10665/358892
  • Wu, G.-H., Smith-Geater, C., Galaz-Montoya, J. G., Gu, Y., Gupte, S. R., Aviner, R., Mitchell, P. G., Hsu, J., Miramontes, R., Wang, K. Q., Geller, N. R., Hou, C., Danita, C., Joubert, L.-M., Schmid, M. F., Yeung, S., Frydman, J., Mobley, W., Wu, C., Thompson, L. M., & Chiu, W. (2023). CryoET reveals organelle phenotypes in Huntington disease patient iPSC-derived and mouse primary neurons. Nature Communications, 14(1), 692. https://doi.org/10.1038/s41467-023-36096-w
  • Yang, L., Peavey, M., Kaskar, K., Chappell, N., Zhu, L., Devlin, D., Valdes, C., Schutt, A., Woodard, T., Zarutskie, P., Cochran, R., & Gibbons, W. E. (2022). Development of a dynamic machine learning algorithm to predict clinical pregnancy and live birth rate with embryo morphokinetics. F&S Reports, 3(2), 116–123. https://doi.org/10.1016/j.xfre.2022.04.004
  • Yao, S., Mills, J. K., Abu Ajamieh, I., Li, H., & Zhang, X. (2020). Automatic three-dimensional imaging for blastomere identification in early-stage embryos based on brightfield microscopy. Optics and Lasers in Engineering, 130, 106093. https://doi.org/10.1016/j.optlaseng.2020.106093
  • You, J. B., McCallum, C., Wang, Y., Riordon, J., Nosrati, R., & Sinton, D. (2021). Machine learning for sperm selection. Nature Reviews. Urology, 18(7), 387–403. https://doi.org/10.1038/s41585-021-00465-1
  • Yüzkat, M., Ilhan, H. O., & Aydin, N. (2021). Multi-model CNN fusion for sperm morphology analysis. Computers in Biology and Medicine, 137, 104790. https://doi.org/10.1016/j.compbiomed.2021.104790
  • Zaninovic, N., Nohales, M., Zhan, Q., de Los Santos, Z. M. J., Sierra, J., Rosenwaks, Z., & Meseguer, M. (2019). A comparison of morphokinetic markers predicting blastocyst formation and implantation potential from two large clinical data sets. Journal of Assisted Reproduction and Genetics, 36(4), 637–646. https://doi.org/10.1007/s10815-018-1396-x
  • Zaninovic, N., & Rosenwaks, Z. (2020). Artificial intelligence in human in vitro fertilization and embryology. Fertility and Sterility, 114(5), 914–920. https://doi.org/10.1016/j.fertnstert.2020.09.157
  • Zhao, M., Xu, M., Li, H., Alqawasmeh, O., Chung, J. P. W., Li, T. C., Lee, T., Tang, P. M., & Chan, D. Y. L. (2021). Application of convolutional neural network on early human embryo segmentation during in vitro fertilization. Journal of Cellular and Molecular Medicine, 25(5), 2633–2644. https://doi.org/10.1111/jcmm.16288
  • Zheng, W., Zhang, S., Gu, Y., Gong, F., Kong, L., Lu, G., Lin, G., Liang, B., & Hu, L. (2021). Non-invasive metabolomic profiling of embryo culture medium using Raman spectroscopy with deep learning model predicts the blastocyst development potential of embryos. Frontiers in Physiology, 12, 777259. https://doi.org/10.3389/fphys.2021.777259
  • Zhou, X., Ma, L., Shang, Y., Xu, M., Fu, X., & Ding, H. (2016). Hybrid generative-discriminative learning for online tracking of sperm cell. Neurocomputing, 208, 218–224. https://doi.org/10.1016/j.neucom.2015.11.114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.