757
Views
39
CrossRef citations to date
0
Altmetric
Review

Topical treatment of glaucoma: established and emerging pharmacology

, &
Pages 885-898 | Received 10 Feb 2017, Accepted 05 May 2017, Published online: 25 May 2017

References

  • Tham TC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–2090.
  • Kapetanakis VV, Chan MP, Foster PJ, et al. Global variations and tie trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis. Br J Ophthalmol. 2016;100:86–93.
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–267.
  • Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–1720.
  • Caprioli J, Coleman AL. Blood flow in glaucoma discussion. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol. 2010;149:704–712.
  • Wostyn P, Van Dam D, Audenaert K, et al. A new glaucoma hypothesis: a role of glymphatic system dysfunction. Fluids Barriers CNS. 2015;12:16.
  • The Glaucoma Laser Trial Research Group. The glaucoma laser trial (GLT). 2. Results of argon laser trabeculoplasty versus topical medicines. Ophthalmology. 1990;97:1403–1413.
  • The Glaucoma Laser Trial Research Group. The glaucoma laser trial (GLT) and glaucoma laser trial follow-up study: 7. Results. Am J Ophthalmol. 1995;120:718–731.
  • Katz LJ, Steinmann WC, Kabir A, et al. Selective laser trabeculoplasty versus medical therapy as initial treatment of glaucoma: a prospective, randomized trial. J Glaucoma. 2012;21:460–468.
  • Heitz RF. AJO history of ophthalmology series: the ordeal bean of calabar. Am Jo Ophthalmol. 2007;144:900.
  • Proudfoot A. The early toxicology of physostigmine: a tale of beans, great men and egos. Toxicol Rev. 2006;25:99–138.
  • Realini T. A history of glaucoma pharmacology. Optom Vis Sci. 2011;88:36–38.
  • Von Weber A. Die Ursache des Glaukoms. Albr Graefes Arch Ophthalmol. 1877;23:91–94.
  • Hoyng PF, Van Beek LM. Pharmacological therapy for glaucoma: a review. Drugs. 2000;59:411–434.
  • Drance SM, Nash PA. The dose response of human intraocular pressure to pilocarpine. Can J Ophthalmol. 1971;6:9–13.
  • Harris LS, Galin MA. Dose response analysis of pilocarpine-induced ocular hypotension. Arch Ophthalmol. 1970;84:605–608.
  • Castagliola C, dell’omo R, Romano MR, et al. Pharmacotherapy of intraocular pressure: part 1. Parasympathomimetic, sympathomimetic and sympatholytics. Expert Opin Pharmacother. 2009;10:2663–2677.
  • Erickson-Lamy KA, Nathanson JA. Epinephrine increases facility of outflow and cyclic AMP content in the human eye in vitro. Invest Ophthalmol Vis Sci. 1992;33:2672–2678.
  • Krupen T. Autonomic drugs: controlling the inflow. In: van Buskirk EM, Shields MB, editors. 100 years of progress in glaucoma. Philadelphia (PA): Lippincott-Raven; 1997. p. 262–271.
  • Robin AL. Short-term effects of unilateral 1% apraclonidine therapy. Arch Ophthalmol. 1988;106:912–915.
  • Abrams DA, Robin AL, Pollack IP, et al. The safety and efficacy of topical 1% ALO 2145 (p-aminoclonidine hydrochloride) in normal volunteers. Arch Ophthalmol. 1987;105:1205–1207.
  • Walters TR. Development and use of brimonidine in treating acute and chronic elevations of intraocular pressure: a review of safety, efficacy, dose response, and dosing studies. Surv Ophthalmol. 1996;41(Suppl. 1):S19–S26.
  • Derick RJ, Robin AL, Walters TR, et al. Brimonidine tartrate: a one-month dose response study [published erratum appears in ophthalmology 1997 Mar; 104(3):346] . Ophthalmology. 1997;104:131–136.
  • Schuman JS, Horwitz B, Choplin NT, et al. A 1-year study of brimonidine twice daily in glaucoma and ocular hypertension: a controlled, randomized, multicenter clinical trial (Chronic Brimonidine Study Group). Arch Ophthalmol. 1997;115:847–852.
  • Toris CB, Gleason ML, Camras CB, et al. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol. 1995;113:1514–1517.
  • Adkins JC, Balfour JA. Brominidine: a review of its pharmacological properties and clinical potential in the management of open-angle glaucoma and ocular hypertension. Drugs Aging. 1998;12:225–241.
  • Burke J, Schwartz M. Preclinical evaluation of brimonidine. Surv Ophthalmol. 1996;41(Suppl.1):S9–S18.
  • Wen R, Cheng T, Li Y, et al. Alpha 2-adrenergic agonists induce basic fibroblast growth factor expression in photoreceptors in vivo and ameliorate light damage. J Neurosci. 1996;16:5986–5992.
  • Phillips CI, Howitt G, Rowlands DJ. Propranolol as ocular hypotensive agent. Br J Ophthalmol. 1967;51:222–226.
  • Zimmerman TJ, Kaufman HE. Timolol: a beta-adrenergic blocking agent for the treatment of glaucoma. Arch Ophthalmol. 1977;95:601–604.
  • Zimmerman TJ, Kaufman HE. Timolol, dose response and duration of action. Arch Ophthalmol. 1977;95:605–607.
  • Ritch R, Hargett NA, Podos SM. The effect of 1.5% timolol maleate on intraocular pressure. Acta Ophthalmol. 1978;56:6–10.
  • Boger WP, Steinert RF, Thomas JV. Timolol in the therapy of ‘ocular hypertension’. Surv Ophthalmol. 1980;25:195–202.
  • Coakes RL, Brubaker RF. The mechanism of timolol in lowering intraocular pressure in the normal eye. Arch Ophthalmol. 1978;96:2045–2048.
  • Topper JE, Brubaker RF. Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthalmol Vis Sci. 1985;26:1315–1319.
  • Marquis RE, Whitson JT. Management of glaucoma: focus on pharmacological therapy. Drugs Aging. 2005;22:1–21. .
  • Caldwell DR, Salisbury CR, Guzek JP. Effects of topical betaxolol in ocular hypertensive patients. Arch Ophthalmol. 1984;102:539–540.
  • Feghali JG, Kaufman PL. Decreased intraocular pressure in the hypertensive human eye with betaxolol, a beta 1-adrenergic antagonist. Am J Ophthalmol. 1985;100:777–782.
  • Stewart RH, Kimbrough RL, Ward RL. Betaxolol vs timolol: a six-month double-blind comparison. Arch Ophthalmol. 1986;104:46–48.
  • Radius RL. Use of betaxolol in the reduction of elevated intraocular pressure. Arch Ophthalmol. 1983;101:898–900.
  • Reiss GR, Brubaker RF. The mechanism of betaxolol, a new ocular hypotensive agent. Ophthalmology. 1983;90:1369–1372.
  • Becker B. Decrease in intraocular pressure in man by a carbonic anhydrase inhibitor, diamox; a preliminary report. Am J Ophthalmol. 1954;37:13–15.
  • Costagliola C, dell’omo R, Romano MR, et al. Pharmacotherapy of intraocular pressure- part II. Carbonic anhydrase inhibitors, prostaglandin analogues and prostamides. Expert Opin Pharmacother. 2009;10:2859–2870.
  • Balfour JA, Wilde MI. Dorzolamide: a review of its pharmacology and therapeutic potential in the management of glaucoma and ocular hypertension. Drugs Aging. 1997;10:384–403.
  • Konowal A, Morrison JC, Brown SVL, et al. Irreversible corneal decompensation in patients treated with topical dorzolamide. Am J Ophthalmol. 1999;127:403–406.
  • Perry CM, McGavin JK, Culy CR, et al. an update of its use in glaucoma and ocular hypertension. Drugs Aging. 2003;20:597–630.
  • Alm A, Villumsen J, Tornquist P, et al. Intraocular pressure-reducing effect of PhXA41 in patients with increased eye pressure: a one-month study. Ophthalmology. 1993;100:1312–1316.
  • Hotehama Y, Mishima HK. Clinical efficacy of PhXA34 and PhXA41, two novel prostaglandin F2 alpha-isopropyl ester analogues for glaucoma treatment. Jpn J Ophthalmol. 1993;37:259–269.
  • Nagasubramanian S, Sheth GP, Hitchings RA, et al. Intraocular pressure-reducing effect of PhXA41 in ocular hypertension: comparison of dose regimens. Ophthalmology. 1993;100:1305–1311.
  • Racz P, Ruzsonyi MR, Nagy ZT, et al. Maintained intraocular pressure reduction with once-a-day application of a new prostaglandin F2 alpha analogue (PhXA41): an in-hospital, placebo- controlled study. Arch Ophthalmol. 1993;111:657–661.
  • Alm A, Stjernschantz J. Effects on intraocular pressure and side effects of 0.005% latanoprost applied once daily, evening or morning: a comparison with timolol (Scandinavian Latanoprost Study Group). Ophthalmology. 1995;102:1743–1752.
  • Gong H, Yang CY. Morphological and hydrodynamic correlations with increasing outflow facility by rho-kinase inhibitor Y-27632. J Ocul Pharmacol Ther. 2014;30:143–153.
  • Diestelhorst M, Hinzpeter B, Krieglstein GK. The effect of isosorbide-mononitrate eye drops on the human intraocular pressure and aqueous humor dynamics. Int Ophthalmol. 1991;15:259–262.
  • Nathanson JA. Nitrovasodilators as a new class of ocular hypotensive agents. J Pharmacol Exp Ther. 1992;260:956–965.
  • Kotikoski H, Alajuuma P, Moilanen E, et al. Comparison of nitric oxide donors in lowering intraocular pressure in rabbits: role of cyclic GMP. J Ocul Pharmacol Ther. 2002;18:11–23.
  • Schuman JS, Erickson K, Nathanson JA. Nitrovasodilator effects on intraocular pressure and outflow facility in monkeys. Exp Eye Res. 1994;589:99–105.
  • Borghi V, Bastia E, Guzzetta M, et al. A novel nitric oxide releasing prostaglandin analog, NCX 125, reduces intraocular pressure in rabbit, dog, and primate models of glaucoma. J Ocul Pharmacol Ther. 2010;26:125–131.
  • Becquet F, Courtois Y, Goureau O. Nitric oxide in the eye: multifaceted roles and diverse outcomes. Surv Ophthalmol. 1997;42:71–82.
  • Gabelt BT, Kaufman PL, Rasmussen CA. Effect of nitric oxide compounds on monkey ciliary muscle in vitro. Exp Eye Res. 2011;93:321–327.
  • Weinreb RN, Ong T, Sforzolini BS, et al. A randomized, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study. Br J Ophthalmol. 2015;99:738–745.
  • Krauss AH, Impagnatiello F, Toris CB, et al. Ocular hypotensive activity of BOL-303259-X, a nitric oxide donating prostaglandin F2α agonist, in preclinical models. Exp Eye Res. 2011;93:250255.
  • Nathanson JA, McKee M. Identification of an extensive system of nitric oxide-producing cells in the ciliary muscle and outflow pathway of the human eye. Invest Ophthalmol Vis Sci. 1995;36:1765–1773.
  • Doganay S, Evereklioglu C, Turkoz Y, et al. Decreased nitric oxide production in primary open-angle glaucoma. Eur J Ophthalmol. 2002;12:44–48.
  • Orihashi M, Shima Y, Tsuneki H, et al. Potent reduction of intraocular pressure by nipradilol plus latanoprost in ocular hypertensive rabbits. Biol Pharm Bull. 2005;28:65–68.
  • Saeki T, Tsuruga H, Ahihara M, et al. Dose-response profile of PF-03187207 (PF-207) and peak IOP lowering response following single topical administration to FP receptor knockout mice vs wild type mice. Invest Ophthalmol Vis Sci. 2009;50:4064.
  • Impagnatiello F, Borghi V, Gale DC, et al. A dual acting compound with latanoprost amide and nitric oxide releasing properties, shows ocular hypotensive effects in rabbits and dogs. Exp Eye Res. 2011;93:243–249.
  • Cavet ME, Vollmer TR, Harrington KL, et al. Regulation of endothelin-1-induced trabecular meshwork cell contractility by latanoprostene bunod. Invest Ophthalmol Vis Sci. 2015;56:4108–4116.
  • Medeiros FA, Martin KR, Peace J, et al. Comparison of latanoprostene bunod 0.024% and timolol maleate 0.5% in open-angle glaucoma or ocular hypertension: the LUNAR study. Am J Ophthalmol. 2016;168:250–259.
  • Weinreb RN, Scassellati SB, Vittitow J, et al. Latanoprostene bunod 0.024% versus timolol maleate 0.5% in subjects with open-angle glaucoma or ocular hypertension: the APOLLO study. Ophthalmology. 2016;23:965–973.
  • Kawase K, Vittitow JL, Weinreb RN, et al. Long-term safety and efficacy of latanoprostene bunod 0.024% in Japanese subjects with open-angle glaucoma or ocular hypertension; the JUPITER study. Adv Ther. 2016;33:1612–1627.
  • Burnett G, Kennedy EP. The enzymatic phosphorylation of proteins. J Biol Chem. 1954;211:969–980.
  • Inoue T, Tanihara H. Rho-associated kinase inhibitors: a novel glaucoma therapy. Prog Retin Eye Res. 2013;37:1–12.
  • Liao JK, Seto M, Noma K. Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol. 2007;50:17–24.
  • Feng Y, LoGrasso PV, Defert O, et al. Rho kinase (ROCK) inhibitors and their therapeutic potential. J Med Chem. 2016;59:2269–2300.
  • Rao VP, Epstein DL. Rho GTPase/Rho kinase inhibition as a novel target for the treatment of glaucoma. BioDrugs. 2007;21:167–177.
  • Wang SK, Chang RT. An emerging treatment option for glaucoma: Rho kinase inhibitors. Clin Ophthalmol. 2014;8:883–890.
  • Honjo M, Tanihara H, Inatani M, et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci. 2001;42:137–144.
  • Waki M, Yoshida Y, Oka T, et al. Reduction of intraocular pressure by topical administration of an inhibitor of the Rho-associated protein kinase. Curr Eye Res. 2001;22:470–474.
  • Nishio M, Fukunaga T, Sugimoto M, et al. The effect of the H-1152P, a potent Rho-associated coiled coil-formed protein kinase inhibitor, in rabbit normal and ocular hypertensive eyes. Curr Eye Res. 2009;34:282–286.
  • Fukunaga T, Ikesugi K, Nishio M, et al. The effect of the Rho-associated protein kinase inhibitor, HA-1077, in the rabbit ocular hypertension model induced by water loading. Curr Eye Res. 2009;34:42–47.
  • Toris CB, McLaughlin MA, Dworak DP, et al. Effects of Rho kinase inhibitors on intraocular pressure and aqueous humor dynamics in nonhuman primates and rabbits. J Ocul Pharmacol Ther. 2016;32:355–364.
  • Rao PV, Deng PF, Kumar J, et al. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest Ophthalmol Vis Sci. 2001;42:1029–1037.
  • Tokushige H, Inatani M, Nemoto S, et al. Effects of topical administration of y-39983, a selective rho-associated protein kinase inhibitor, on ocular tissues in rabbits and monkeys. Invest Ophthalmol Vis Sci. 2007;48:3216–3222.
  • Sugiyama T, Shibata M, Kajiura S, et al. Effects of fasudil, a Rho-associated protein kinase inhibitor, on optic nerve head blood flow in rabbits. Invest Ophthalmol Vis Sci. 2011;52:64–69.
  • Kitaoka Y, Kitaoka Y, Kumai T, et al. Involvement of RhoA and possible neuroprotective effect of fasudil, a Rho kinase inhibitor, in NMDA-induced neurotoxicity in the rat retina. Brain Res. 2004;1018:111–118.
  • Sagawa H, Terasaki H, Nakamura M, et al. A novel ROCK inhibitor, Y-39983, promotes regeneration of crushed axons of retinal ganglion cells into the optic nerve of adult cats. Exp Neurol. 2007;205:230–240.
  • Hirata A, Inatani M, Yonemura N, et al. Y-27632, a Rho-associated protein kinase inhibitor attenuates neuronal cell death after transient retinal ischemia. Grafes Arch Clin Exp Ophthalmol. 2008;246:51–59.
  • Isobe T, Mizuno K, Kaneko Y, et al. Effects of K-115, a rho-kinase inhibitor, on aqueous humor dynamics in rabbits. Curr Eye Res. 2014;39:813–822.
  • Tanihara H, Inoue T, Yahmato T, et al. Phase 1 clinical trials of a selective Rho kinase inhibitor, K-115. JAMA Ophthalmol. 2013;131:1288–1295.
  • Tanihara H, Inoue T, Yamamoto T, et al. Phase 2 randomized clinical study of a Rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 2013;156:731–736.
  • Williams RD, Novack GD, Van Haarlem T, et al. Ocular hypotensive effect of the Rho kinase inhibitor AR-12286 in patients with glaucoma and ocular hypertension. Am J Ophthalmol. 2011;152:834–841.
  • Tanihara H, Inoue T, Yamamoto T, et al. Additive intraocular pressure-lowering effects of the Rho kinase inhibitor ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmol. 2015;133:755–761.
  • Inoue T, Tanihara H, Tokushige H, et al. Efficacy and safety of SNJ-1656 in primary open-angle glaucoma or ocular hypertension. Acta Ophthalmol. 2015;93:e393–e395.
  • Bacharach J, Dubiner HB, Levy B, et al. Double-masked, randomized, dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure. Ophthalmology. 2015;122:302–307.
  • Tanihara H, Inoue T, Yamamoto T, et al. Intra-ocular pressure-lowering effects of a Rho kinase inhibitor, ripasudil (K-115), over 24 hours in primary open-angle glaucoma and ocular hypertension: a randomized, open-label, crossover study. Acta Ophthalmol. 2015;93:e254–e260.
  • Sato S, Hirooka K, Nitta E, et al. Additive intraocular pressure lowering effects of the Rho kinase inhibitor, ripasudil in glaucoma patients not able to obtain adequate control after other maximal tolerate medical therapy. Adv Ther. 2016;33:1628–1634.
  • Tanihara H, Inatani M, Honjo M, et al. Intraocular pressure-lowering effects and safety of topical administration of a selective ROCK inhibitor, SNJ-1656, in healthy volunteers. Arch Ophthalmol. 2008;126:309–315.
  • Kopczynski C, Novack GD, Swearingen D, et al. Ocular hypotensive efficacy, safety, and systemic absorption of AR-12286 ophthalmic solution in normal volunteers. Br J Ophthalmol. 2013;97:567–572.
  • Skaat A, Jasien JV, Ritch R. Efficacy of topically administered Rho-kinase inhibitor AR-12286 in patients with exfoliation syndrome and ocular hypertension or glaucoma. J Glaucoma. 2016;25:807–814.
  • Sturdivant JM, Royalty SM, Lin CW, et al. Discovery of the ROCK inhibitor netarsudil for the treatment of open-angle glaucoma. Bioorg Med Chem Lett. 2016;26:2475–2480.
  • Wang RF, Williamson JE, Kopczynski C, et al. Effect of 0.04% AR-13324, a ROCK, and norepinephrine transport inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma. 2015;24:51–54.
  • Kiel JW, Kopczynski CC. Effect of AR-13324 on episcleral venous pressure in Dutch belted rabbits. J Ocul Pharmacol Ther. 2015;31:146–151.
  • Lewis RA, B L, Ramirez N, et al. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28 day, randomized, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016;100:339–344.
  • Shaw PX, Sang A, Wang Y, et al. Topical administration of a ROCK/NET inhibitor promotes retinal ganglion cell survival and axon regeneration after optic nerve injury. Exp Eye Res. 2016;S0014-S4835:30181–301816.
  • Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets – what are the challenges? Nat Rev Drug Discov. 2013;12:265–286.
  • Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov. 2006;5:247–264.
  • Zhong Y, Yang Z, Huang WC, et al. Adenosine, adenosine receptors and glaucoma: an updated overview. Biochim Biophys Acta. 2013;1830:2882–2890.
  • Schlötzer-Schrehardt U, Zenkel M, Decking U, et al. Selective upregulation of the A3 adenosine receptor in eyes with pseudoexfoliation syndrome and glaucoma. Invest Ophthalmol Vis Sci. 2005;46:2023–2034.
  • Drury AN, Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 1929;68:213–237.
  • Avila MY, Stone RA, Civan MM. A(1)-, A(2A)- and A(3)- subtype adenosine receptors modulate intraocular pressure in the mouse. Br J Pharmacol. 2001;134:241–245.
  • Tian B, Gabelt BT, Crosson CE, et al. Effects of adenosine agonists on intraocular pressure and aqueous humor dynamics in cynomolgus monkeys. Exp Eye Res. 1997;64:979–989.
  • Crosson CE, Gray T. Characterization of ocular hypertension induced by adenosine agonists. Invest Ophthalmol Vis Sci. 1996;37:1833–1839.
  • Crosson CE. Adenosine receptor activation modulates intraocular pressure in rabbits. J Pharmacol Exp Ther. 1995;273:320–326.
  • Crosson CE, Gray T. Modulation of intraocular pressure by adenosine agonists. J Ocul Pharmacol. 1004;10:379–383.
  • Crosson CE. Ocular hypotensive activity of the adenosine agonist (R)-phenylisopropyladenosine in rabbits. Curr Eye Res. 1992;11:453–458.
  • Laties A, Rich CC, Stoltz R, et al. A randomized phase 1 dose escalation study to evaluate safety, tolerability, and pharmacokinetics of trabodenoson in healthy adult volunteers. J Ocul Pharmacol Ther. 2016;32:548–554.
  • Myers JS, Sall KN, DuBiner H, et al. A dose-escalation study to evaluate the safety, tolerability, pharmacokinetics, and efficacy of 2 and 4 weeks of twice-daily ocular trabodenoson in adults with ocular hypertension or primary open-angle glaucoma. J Ocul Pharmacol Ther. 2016;32:555–562.
  • Guzman-Aranguez A, Loma P, Pintor J. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Br J Pharmacol. 2013;170:730–747.
  • Moreno- Montañés J, Sádaba B, Ruz V, et al. Phase 1 clinical trial of SYL040012, a small interfering RNA targeting β-adrenergic receptor 2, for lowering intraocular pressure. Mol Ther. 2014;22:226–232.
  • Gonzalez V, Palumaa K, Turman K, et al. Phase 2 of bamosiran (SYL040012), a novel RNAi based compound for the treatment of increased intraocular pressure associated to glaucoma. Invest Ophthalmol Vis Sci. 2014;55:564.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.