2,272
Views
24
CrossRef citations to date
0
Altmetric
Review

Pharmacotherapeutic options for treating Staphylococcus aureus bacteremia

, , , &
Pages 1947-1963 | Received 28 Jul 2017, Accepted 07 Nov 2017, Published online: 04 Dec 2017

References

  • Laupland KB, Lyytikainen O, Sogaard M, et al. The changing epidemiology of Staphylococcus aureus bloodstream infection: a multinational population-based surveillance study. Clin Microbiol Infect. 2013;19:465–471.
  • Klevens RM, Morrison MA, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298:1763–1771.
  • Kallen AJ, Mu Y, Bulens S, et al. Health care-associated invasive MRSA infections, 2005-2008. JAMA. 2010;304:641–648.
  • Larsen J, Petersen A, Larsen AR, et al. Emergence of livestock-associated methicillin-resistant Staphylococcus aureus bloodstream infections in Denmark. Clin Infect Dis. 2017 May 30. [ [Epub ahead of print]]. DOI:10.1093/cid/cix504.
  • Oliveira DC, Tomasz A, De Lencastre H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of methicillin-resistant Staphylococcus aureus. Lancet Infect Dis. 2002;2:180–189.
  • Gasch O, Ayats J, Dominguez MA, et al. Epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infection: secular trends over 19 years at a university hospital. Medicine (Baltimore). 2011;90:319–327.
  • Van Hal SJ, Jensen SO, Vaska VL, et al. Predictors of mortality in Staphylococcus aureus bacteremia. Clin Microbiol Rev. 2012;25:362–386.
  • Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 2011;52:285–292.
  • Cosgrove SE, Sakoulas G, Perencevich EN, et al. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36:53–59.
  • Kaasch AJ, Barlow G, Edgeworth JD, et al. Staphylococcus aureus bloodstream infection: a pooled analysis of five prospective, observational studies. J Infect. 2014;68:242–251.
  • Gasch O, Camoez M, Dominguez MA, et al. Predictive factors for mortality in patients with methicillin-resistant Staphylococcus aureus bloodstream infection: impact on outcome of host, microorganism and therapy. Clin Microbiol Infect. 2013;19:1049–1057.
  • Rodríguez-Baño J, De Cueto M, Retamar P, et al. Current management of bloodstream infections. Expert Rev Anti Infect Ther. 2010;8:815–829.
  • Jenkins TC, Price CS, Sabel AL, et al. Impact of routine infectious diseases service consultation on the evaluation, management, and outcomes of Staphylococcus aureus bacteremia. Clin Infect Dis. 2008;46:1000–1008.
  • Honda H, Krauss M, Jones J, et al. The value of infectious diseases consultation in Staphylococcus aureus bacteremia. Am J Med. 2010;123:631–637.
  • Nagao M, Iinuma Y, Saito T, et al. Close cooperation between infectious disease physicians and attending physicians can result in better management and outcome for patients with Staphylococcus aureus bacteraemia. Clin Microbiol Infect. 2010;16:1783–1788.
  • Robinson JO, Pozzi-Langhi S, Phillips M, et al. Formal infectious diseases consultation is associated with decreased mortality in Staphylococcus aureus bacteraemia. Eur J Clin Microbiol Infect Dis. 2012;31:2421–2428.
  • López-Cortés LE, Del Toro MD, Gálvez-Acebal J, et al. Impact of an evidence-based bundle intervention in the quality-of-care management and outcome of Staphylococcus aureus bacteremia. Clin Infect Dis. 2013;57:1225–1233.
  • Chambers HF, Deleo FR. Waves of resistance: staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7:629–641.
  • Van Bijnen EME, Paget J, De Lange-De Klerk ESM, et al. Antibiotic exposure and other risk factors for antimicrobial resistance in nasal commensal Staphylococcus aureus: an ecological study in 8 European countries. PLoS One. 2015;10:e0135094.
  • Hagstrand Aldman M, Skovby A,I, Påhlman L. Penicillin-susceptible Staphylococcus aureus: susceptibility testing, resistance rates and outcome of infection. Infect Dis (Auckl). 2017;49:454–460.
  • Chang F-Y, Peacock JE, Musher DM, et al. Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine (Baltimore). 2003;82:333–339.
  • Naber C, Baddour L, Giamarellos-Bourboulis E, et al. Clinical consensus conference: survey on gram-positive bloodstream infections with a focus on Staphylococcus aureus. Clin Infect Dis. 2009;48:S260–S70.
  • Gudiol F, Aguado JM, Almirante B, et al. Diagnosis and treatment of bacteremia and endocarditis due to Staphylococcus aureus. A clinical guideline from the Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC). Enfermedades Infecc Y Microbiol Clínica. 2015;33:625, e1–625.e23
  • Aster RH. Drug-induced immune cytopenias. Toxicology. 2005;209:149–153.
  • Lee S, Choe PG, Song K-H, et al. Is cefazolin inferior to nafcillin for treatment of methicillin-susceptible Staphylococcus aureus bacteremia? Antimicrob Agents Chemother. 2011;55:5122–5126.
  • Vardakas KZ, Apiranthiti KN, Falagas ME. Antistaphylococcal penicillins versus cephalosporins for definitive treatment of methicillin-susceptible Staphylococcus aureus bacteraemia: a systematic review and meta-analysis. Int. J. Antimicrob Agents. 2014;44:486–492.
  • Bai AD, Showler A, Burry L, et al. Comparative effectiveness of cefazolin versus cloxacillin as definitive antibiotic therapy for MSSA bacteraemia: results from a large multicentre cohort study. J Antimicrob Chemother. 2015;70:1539–1546.
  • Forsblom E, Ruotsalainen E, Järvinen A. Comparable effectiveness of first week treatment with anti-staphylococcal penicillin versus cephalosporin in methicillin-sensitive Staphylococcus aureus bacteremia: a propensity-score adjusted retrospective study. PLoS One. 2016;11:e0167112.
  • McDanel JS, Roghmann M-C, Perencevich EN, et al. Comparative effectiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: a nationwide cohort study. Clin Infect Dis. 2017;5:100–106.
  • Li J, Echevarria KL, Traugott KA. β-lactam therapy for methicillin-susceptible Staphylococcus aureus bacteremia: a comparative review of cefazolin versus antistaphylococcal penicillins. Pharmacotherapy. 2017;37:346–360.
  • Karchmer AW. Definitive treatment for methicillin-susceptible Staphylococcus aureus bacteremia: data versus a definitive answer? Clin Infect Dis. 2017;65:107–109.
  • Rasmussen JB, Knudsen JD, Arpi M, et al. Relative efficacy of cefuroxime versus dicloxacillin as definitive antimicrobial therapy in methicillin-susceptible Staphylococcus aureus bacteraemia: a propensity-score adjusted retrospective cohort study. J. Antimicrob Chemother. 2014;69:506–514.
  • Nissen JL, Skov R, Knudsen JD, et al. Effectiveness of penicillin, dicloxacillin and cefuroxime for penicillin-susceptible Staphylococcus aureus bacteraemia: a retrospective, propensity-score-adjusted case-control and cohort analysis. J. Antimicrob Chemother. 2013;68:1894–1900.
  • Paul M, Zemer-Wassercug N, Talker O, et al. Are all beta-lactams similarly effective in the treatment of methicillin-sensitive Staphylococcus aureus bacteraemia? Clin Microbiol Infect. 2011;17:1581–1586.
  • Patel UC, McKissic EL, Kasper D, et al. Outcomes of ceftriaxone use compared to standard of therapy in methicillin susceptible staphylococcal aureus (MSSA) bloodstream infections. Int J Cli Pharm. 2014;36:1282–1289.
  • Blumenthal KG, Parker RA, Shenoy ES, et al. Improving clinical outcomes in patients with methicillin-sensitive Staphylococcus aureus bacteremia and reported penicillin allergy. Clin Infect Dis. 2015;61:741–749.
  • Schweizer ML, Furuno JP, Harris AD, et al. Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia. BMC Infect Dis. 2011;11:279.
  • Wong D, Wong T, Romney M, et al. Comparative effectiveness of β-lactam versus vancomycin empiric therapy in patients with methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia. Ann Clin Microbiol Antimicrob. 2016;15:27.
  • Kullar R, McKinnell JA, Sakoulas G. Avoiding the perfect storm: the biologic and clinical case for reevaluating the 7-day expectation for methicillin-resistant Staphylococcus aureus bacteremia before switching therapy. Clin Infect Dis. 2014;59:1455–1461.
  • Rieg S, Joost I, Weiß V, et al. Combination antimicrobial therapy in patients with Staphylococcus aureus bacteraemia - a post hoc analysis in 964 prospectively evaluated patients. Clin Microbiol Infect. 2017 e1–406.e8;23:406.
  • Hageman JC, Liedtke LA, Sunenshine RH, et al. Management of persistent bacteremia caused by methicillin-resistant Staphylococcus aureus: a survey of infectious diseases consultants. Clin Infect Dis. 2006;43:e42–e45.
  • Sande MA, Courtney KB. Nafcillin-gentamicin synergism in experimental staphylococcal endocarditis. J Lab Clin Med. 1976;88:118–124.
  • Korzeniowski O, Sande MA. Combination antimicrobial therapy for Staphylococcus aureus endocarditis in patients addicted to parenteral drugs and in non-addicts: a prospective study. Ann Intern Med. 1982;97:496–503.
  • Cosgrove SE, Vigliani GA, Fowler VG Jr, et al. Initial low-dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic. Clin Infect Dis. 2009;48:713–721.
  • Riedel DJ, Weekes E, Forrest GN. Addition of rifampin to standard therapy for treatment of native valve infective endocarditis caused by Staphylococcus aureus. Antimicrob Agents Chemother. 2008;52:2463–2467.
  • Thwaites G, Auckland C, Barlow G, et al. Adjunctive rifampicin to reduce early mortality from Staphylococcus aureus bacteraemia (ARREST): study protocol for a randomised controlled trial. Trials. 2012;13:241.
  • Thwaites G. Adjunctive rifampicin to reduce early mortality from Staphylococcus aureus bacteraemia: final results from the multi-centre, randomised blinded placebo-controlled ARREST trial. Communication presented at: 27th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); 2017 April 22–25; Viena.
  • Sakoulas G, Moise PA, Casapao AM, et al. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin Ther. 2014;36:1317–1333.
  • Miró JM, Entenza JM, Del Río A, et al. High-dose daptomycin plus fosfomycin is safe and effective in treating methicillin-susceptible and methicillin-resistant Staphylococcus aureus endocarditis. Antimicrob Agents Chemother. 2012;56:4511–4515.
  • Moise PA, Amodio-Groton M, Rashid M, et al. A. Multicenter evaluation of the clinical outcomes of daptomycin with and without concomitant β-lactams in patients with Staphylococcus aureus bacteremia and mild to moderate renal impairment. Antimicrob Agents Chemother. 2013;57:1192–1200.
  • Popovic M. Fosfomycin: an old, new friend? Eur J Clin Microbiol Infect Dis. 2010;29:127–142.
  • Kastoris AC, Rafailidis PI, Vouloumanou EK, et al. Synergy of fosfomycin with other antibiotics for Gram-positive and Gram-negative bacteria. Eur J Clin Pharmacol. 2010;66:359–368.
  • Portier H, Tremeaux JC, Chavanet P, et al. Treatment of severe staphylococcal infections with cefotaxime and fosfomycin in combination. J Antimicrob Chemother. 1984;14(Suppl B):277–284.
  • Iarikov D, Wassel R, Farley J, et al. Adverse events associated with fosfomycin use: review of the literature and analyses of the FDA adverse event reporting system database. Infect Dis Ther. 2015;4:433–458.
  • Sakoulas G, Olson J, Yim J, et al. Cefazolin and ertapenem, a synergistic combination used to clear persistent Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2016;60:6609–6618.
  • Fowler VG Jr, Boucher HW, Corey GR, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355:653–665.
  • Stryjewski ME, Lentnek A, O’Riordan W, et al. A randomized Phase 2 trial of telavancin versus standard therapy in patients with uncomplicated Staphylococcus aureus bacteremia: the ASSURE study. BMC Infect Dis. 2014;14:289.
  • Shorr AF, Kunkel MJ, Kollef M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: pooled analysis of randomized studies. J Antimicrob Chemother. 2005;56:923–929.
  • Van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis. 2012;54:755–771.
  • Kalil AC, Van Schooneveld TC, Fey PD, et al. Association between vancomycin minimum inhibitory concentration and mortality among patients with Staphylococcus aureus bloodstream infections: a systematic review and meta-analysis. JAMA. 2014;312:1552–1564.
  • Holmes NE, Turnidge JD, Munckhof WJ, et al. Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations. J Infect Dis. 2011;204:340–347.
  • Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66:82–98.
  • Lodise TP, Patel N, Lomaestro BM, et al. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49:507–514.
  • Van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57:734–744.
  • Cataldo MA, Tacconelli E, Grilli E, et al. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother. 2012;67:17–24.
  • Svetitsky S, Leibovici L, Paul M. Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother. 2009;53:4069–4079.
  • Calain P, Krause KH, Vaudaux P, et al. Early termination of a prospective, randomized trial comparing teicoplanin and flucloxacillin for treating severe staphylococcal infections. J Infect Dis. 1987;155:187–191.
  • Gilbert DN, Wood CA, Kimbrough RC. Failure of treatment with teicoplanin at 6 milligrams/kilogram/day in patients with Staphylococcus aureus intravascular infection. The Infectious Diseases Consortium of Oregon. Antimicrob Agents Chemother. 1991;35:79–87.
  • Yoon YK, Park DW, Sohn JW, et al. Multicenter prospective observational study of the comparative efficacy and safety of vancomycin versus teicoplanin in patients with health care-associated methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2014;58:317–324.
  • Lin SH, Lai CC, Tan CK, et al. Comparative efficacy of vancomycin and teicoplanin in the treatment of hospitalised elderly patients with persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia. Int J Antimicrob Agents. 2011;37:179–181.
  • Chang HJ, Hsu PC, Yang CC, et al. Influence of teicoplanin MICs on treatment outcomes among patients with teicoplanin-treated methicillin-resistant Staphylococcus aureus bacteraemia: a hospital-based retrospective study. J Antimicrob Chemother. 2012;67:736–741.
  • Moore CL, Osaki-Kiyan P, Haque NZ, et al. Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case-control study. Clin Infect Dis. 2012;54:51–58.
  • Murray KP, Zhao JJ, Davis SL, et al. Early use of daptomycin versus vancomycin for methicillin-resistant Staphylococcus aureus bacteremia with vancomycin minimum inhibitory concentration >1 mg/L: a matched cohort study. Clin Infect Dis. 2013;56:1562–1569.
  • Hayden MK, Rezai K, Hayes RA, et al. Development of daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005;43:5285–5287.
  • Mangili A, Bica I, Snydman DR, et al. Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2005;40:1058–1060.
  • Gould IM, Miró JM, Rybak MJ. Daptomycin: the role of high-dose and combination therapy for Gram-positive infections. Int J Antimicrob Agents. 2013;42:202–210.
  • Gasch O, Camoez M, Domínguez MA, et al. Emergence of resistance to daptomycin in a cohort of patients with methicillin-resistant Staphylococcus persistent bacteraemia treated with daptomycin. J Antimicrob Chemother. 2014;69:568–571.
  • Sader HS, Mendes RE, Streit JM, et al., Antimicrobial susceptibility trends among Staphylococcus aureus from United States hospitals: results from 7 years of the Ceftaroline (AWARE) Surveillance Program (2010-2016). Antimicrob Agents Chemother. 2017 Jun 19:pii: AAC.01043-17. [Epub ahead of print]. DOI:10.1128/AAC.01043-17.
  • Nigo M, Diaz L, Carvajal LP, et al. Ceftaroline-resistant, daptomycin-tolerant, and heterogeneous vancomycin-intermediate methicillin resistant Staphylococcus aureus causing infective endocarditis. Antimicrob Agents and Chemother. 2017;3:e01235–16.
  • File TM Jr, Low DE, Eckburg PB, et al. Focus 1: a randomized, double-blinded, multicentre, phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia. J Antimicrob Chemother. 2011;66(suppl 3):S19–32.
  • Corey GR, Wilcox MH, Talbot GH, et al. CANVAS 1: the first phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65(suppl4):iv41–51.
  • Brooks M FDA OKs label update for antibiotic ceftaroline fosamil. [cited 2017 Jul 27]. Available from: www. medscape.com/viewarticle/850463v.
  • Turnidge JD. The pharmacodynamics of beta-lactams. Clin Infect Dis. 1998;27:10–22.
  • Casapao AM, Davis SL, Barr VO, et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrob Agents Chemother. 2014;58:2541–2546.
  • Tattevin P, Boutoille D, Vitrat V, et al. Salvage treatment of methicillin-resistant staphylococcal endocarditis with ceftaroline: a multicentre observational study. J Antimicrob Chemother. 2014;69:2010–2013.
  • Zasowski EJ, Trinj TD, Claeys KC, et al. Multicenter observational study of ceftaroline fosamil for methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother. 2017;61(2):pii: e02015-16.
  • Lin JC, Aung G, Thomas A, et al. The use of ceftaroline fosamil in methicillin-resistant Staphylococcus aureus endocarditis and deep-seated MRSA infections: a retrospective case series of 10 patients. J Infect Chemother. 2013;19:42–49.
  • Ho TT, Cadena J, Childs LM, et al. Methicillin-resistant Staphylococcus aureus bacteraemia and endocarditis treated with ceftaroline salvage therapy. J Antimicrob Chemother. 2012;67:1267–1270.
  • Paladino JA, Jacobs DM, Shields RK, et al. Use of ceftaroline after glycopeptide failure to eradicate methicillin-resistant Staphylococcus aureus bacteraemia with elevated vancomycin minimum inhibitory concentrations. Int J Antimicrob Agents. 2014;44:557–563.
  • Polenakovik HM, Pleiman CM. Ceftaroline for methicillin-resistant Staphylococcus aureus bacteraemia: case series and review of the literature. Int J Antimicrob Agents. 2013;42:450–455.
  • Vazquez JA, Maggiore CR, Cole P, et al. Ceftaroline fosamil for the treatment of Staphylococcus aureus bacteremia secondary to acute bacterial skin and skin structure infections or community-acquired bacterial pneumonia. Infect Dis Clin Pract. 2015;23:39–43.
  • Arshad S, Huang V, Hartmen P, et al. Ceftaroline fosamil monotherapy for methicillin-resistant Staphylococcus aureus bacteremia. A comparative clinical outcomes study. Int J Infect Dis. 2017;57:27–31.
  • Awad SS, Rodriguez AH, Chuang YC, et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis. 2014;59:51–61.
  • Oltolini C, Castiglioni B, Tassan Din C, et al. Methicillin-resistant Staphylococcus aureus endocarditis: first report of daptomycin plus ceftobiprole combination as salvage therapy. Int J Antimicrob Agents 2016;47:502–504.
  • MacGowan AP. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J Antimicrob Chemother. 2003;51(Suppl 2):ii17–25.
  • Howden BP, Ward PB, Charles PGP, et al. Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin Infect Dis. 2004;38:521–528.
  • Falagas ME, Siempos II, Vardakas KZ. Linezolid versus glycopeptide or beta-lactam for treatment of Gram-positive bacterial infections: meta-analysis of randomised controlled trials. Lancet Infect Dis. 2008;8:53–66.
  • Jang H, Kim S, Kim KH, et al. Salvage treatment for persistent methicillin‐resistant Staphylococcus aureus bacteremia: efficacy of linezolid with or without carbapenem. Clin Infect Dis. 2009;49:395–401.
  • Park HJ, Kim S-H, Kim M-J, et al. Efficacy of linezolid-based salvage therapy compared with glycopeptide-based therapy in patients with persistent methicillin-resistant Staphylococcus aureus bacteremia. J Infect. 2012;65:505–512.
  • Muñoz P, Rodríguez-Creixéms M, Moreno M, et al. Linezolid therapy for infective endocarditis. Clin Microbiol Infect. 2007;13:211–215.
  • Falagas ME, Manta KG, Ntziora F, et al. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J Antimicrob Chemother. 2006;58:273–280.
  • Green SL, Maddox JC, Huttenbach ED. Linezolid and reversible myelosuppression. JAMA. 2001;285:1291.
  • Wigen CL, Goetz MB. Serotonin syndrome and linezolid. Clin Infect Dis. 2002;34:1651–1652.
  • Prokocimer P, De Anda C, Fang E, et al. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. Jama. 2013;309:559–569.
  • Moran GJ, Fang E, Corey GR, et al. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2014;14:696–705.
  • Safety and efficacy of BAY1192631 in Japanese patients with methicillin-resistant Staphylococcus aureus (MRSA) infections - full text view - ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT01967225?term=tedizolid&rank=8.
  • Burdette SD, Trotman R. Tedizolid: the first once-daily oxazolidinone class. Clin Infect Dis. 2015;61:1315–1321.
  • Markowitz N, Quinn EL, Saravolatz LD. Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection. Ann Intern Med. 1992;117:390–398.
  • Goldberg E, Paul M, Talker O, et al. Co-trimoxazole versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus bacteraemia: a retrospective cohort study. J Antimicrob Chemother. 2010;65:1779–1783.
  • Paul M, Bishara J, Yahav D, et al. Trimethorpim-sulfamethoxazole versus vancomycin for severe infections caused by methicillin resistant Staphylococcus aureus: randomized controlled trial. BMJ. 2015;350:h2219.
  • Martínez-Aguilar G, Hammerman WA, Mason EO Jr, et al. Clindamycin treatment of invasive infections caused by community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus in children. Pediatr Infect Dis J. 2003;22:593–598.
  • Zhanel GG, Calic D, Schweizer F, et al. New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. Drugs. 2010;70:859–886.
  • [cited 2017 June 30]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/001240/WC500115429.pdf.
  • Corey GR, Rubinstein E, Stryjewski ME, et al. Potential role for telavancin in bacteremic infections due to gram-positive pathogens: focus on Staphylococcus aureus. Clin Infect Dis. 2015;60:787–796.
  • Rubinstein E, Lalani T, Corey GR, et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis. 2011;52:31–40.
  • Stryjewski ME, Barriere SL, Rubinstein E, et al. Telavancin versus vancomycin for bacteraemic hospital-acquired pneumonia. Int J Antimicrob Agents. 2013;42:367–369.
  • Ruggero MA, Peaper DR, Topal JE. Telavancin for refractory methicillin-resistant Staphylococcus aureus bacteremia and infective endocarditis. Infect Dis (Lond). 2015;47:379–384.
  • Chaftari AM, Hachem R, Jordan M, et al. Case-control study of telavancin as an alternative treatment for gram-positive bloodstream infections in patients with cancer. Antimicrob Agents Chemother. 2015;60:239–244.
  • [cited 2017 June 30]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/003785/WC500180908.pdf.
  • Corey GR, Kabler H, Mehra P, et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med. 2014;370:2180–2190.
  • Stewart CL, Turner MS, Frens JJ, et al. Real-world experience with oritavancin therapy in invasive gram-positive infections. Infect Dis Ther. 2017;6:277–289.
  • [cited 2017 June 30]. Availble from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/002840/WC500183872.pdf.
  • Dunne MW, Puttagunta S, Giordano P, et al. Randomized clinical trial of single-dose versus weekly dalbavancin for treatment of acute bacterial skin and skin structure infection. Clin Infect Dis. 2016;62:545–551.
  • Raad I, Darouiche R, Vazquez J, et al. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens. Clin Infect Dis. 2005;40:374–380.
  • Florescu I, Beuran M, Dimov R, et al. Efficacy and safety of tigecycline compared with vancomycin or linezolid for treatment of serious infections with methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci: a phase 3, multicentre, double-blind, randomized study. J Antimicrob Chemother. 2008;62(Suppl 1):i17–28.
  • Munoz-Price LS, Lolans K, Quinn JP. Four cases of invasive methicillin-resistant Staphylococcus aureus (MRSA) infections treated with tigecycline. Scand J Infect Dis. 2006;38:1081–1084.
  • Prasad P, Sun J, Danner RL, et al. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis. 2012;54:1699–1709.
  • McConeghy KW, Bleasdale SC, Rodvold KA. The empirical combination of vancomycin and a β-lactam for Staphylococcal bacteremia. Clin Infect Dis. 2013;57:1760–1765.
  • Ammerlaan H, Seifert H, Harbarth S, et al. Adequacy of antimicrobial treatment and outcome of Staphylococcus aureus bacteremia in 9 Western European countries. Clin Infect Dis. 2009;49:997–1005.
  • Paul M, Kariv G, Goldberg E, et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2010;65:2658–2665.
  • Hagihara M, Wiskirchen DE, Kuti JL, et al. In vitro pharmacodynamics of vancomycin and cefazolin alone and in combination against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:202–207.
  • Barber KE, Rybak MJ, Sakoulas G. Vancomycin plus ceftaroline shows potent in vitro synergy and was successfully utilized to clear persistent daptomycin-non-susceptible MRSA bacteraemia. J Antimicrob Chemother. 2015;70:311–313.
  • Tang HJ, Lai CC, Chen CC, et al. Cephalosporin-glycopeptide combinations for use against clinical methicillin-resistant Staphylococcus aureus isolates: enhanced in vitro antibacterial activity. Front Microbiol. 2017;8:884.
  • Dilworth TJ, Ibrahim O, Hall P, et al. β-Lactams enhance vancomycin activity against methicillin-resistant Staphylococcus aureus bacteremia compared to vancomycin alone. Antimicrob Agents Chemother. 2014;58:102–109.
  • Davis JS, Sud A, O’Sullivan MVN, et al. Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin Infect Dis. 2016;62:173–180.
  • Tong SY, Nelson J, Paterson DL, et al. Combination antibiotic therapy for methicillin-resistant Staphylococcus aureus infection: study protocol for a randomised controlled trial. Trials. 2016 Mar 31;17:170.
  • Werth BJ, Vidaillac C, Murray KP, et al. Novel combinations of vancomycin plus ceftaroline or oxacillin against methicillin-resistant vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA. Antimicrob Agents Chemother. 2013;57:2376–2379.
  • Gritsenko D, Fedorenko M, Ruhe JJ, et al. Combination therapy with vancomycin and ceftaroline for refractory methicillin-resistant Staphylococcus aureus bacteremia: a case series. Clin Ther. 2017;39:212–218.
  • Dhand A, Bayer AS, Pogliano J, et al. Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis. 2011;53:158–163.
  • Mehta S, Singh C, Plata KB, et al. β-Lactams increase the antibacterial activity of 0daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives. Antimicrob Agents Chemother. 2012;56:6192–6200.
  • Dhand A, Sakoulas G. Daptomycin in combination with other antibiotics for the treatment of complicated methicillin-resistant Staphylococcus aureus bacteremia. Clin Ther. 2014;36:1303–1316.
  • Werth BJ, Barber KE, Ireland CE, Rybak MJ. Evaluation of ceftaroline, vancomycin, daptomycin, or ceftaroline plus daptomycin against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob Agents Chemother. 2014;58:3177–3181.
  • Werth BJ, Sakoulas G, Rose WE, et al. Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2013;57: 66–73. Erratum in: Antimicrob Agents Chemother. 2013; 57:1565.
  • Del Río A, García-de-la-Mària C, Entenza JM, et al.; Hospital Clinic Experimental Endocarditis Study Group. Fosfomycin plus β-Lactams as synergistic bactericidal combinations for experimental endocarditis due to methicillin-resistant and glycopeptide-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2015;60:478–486.
  • Del Río A, Gasch O, Moreno A, et al. Efficacy and safety of fosfomycin plus imipenem as rescue therapy for complicated bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: a multicenter clinical trial. Clin Infect Dis. 2014;59:1105–1112.
  • Chen LY, Huang CH, Kuo SC, et al. High-dose daptomycin and fosfomycin treatment of a patient with endocarditis caused by daptomycin-nonsusceptible Staphylococcus aureus: case report. BMC Infect Dis. 2011;11:152.
  • Shaw E, Miró JM, Puig-Asensio M, et al.; Spanish Network for Research in Infectious Diseases (REIPI RD12/0015); Instituto de Salud Carlos III, Madrid, Spain; GEIH (Hospital Infection Study Group). . Daptomycin plus fosfomycin versus daptomycin monotherapy in treating MRSA: protocol of a multicentre, randomised, phase III trial. BMJ Open. 2015;5:e006723.
  • Steed ME, Vidaillac C, Rybak MJ. Novel daptomycin combinations against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus in an in vitro model of simulated endocardial vegetations. Antimicrob Agents Chemother. 2010;54:5187–5192.
  • Steed ME, Werth BJ, Ireland CE, et al. Evaluation of the novel combination of high-dose daptomycin plus trimethoprimsulfamethoxazole against daptomycin-nonsusceptible methicillin resistant Staphylococcus aureus using an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob Agents Chemother. 2012;56:5709–5714.
  • Claeys KC, Smith JR, Casapao AM, et al. Impact of the combination of daptomycin and trimethoprim-sulfamethoxazole on clinical outcomes in methicillin-resistant Staphylococcus aureus infections. Antimicrob Agents Chemother. 2015;59:1969–1976.
  • Avery LM, Steed ME, Woodruff AE, et al. Daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus vertebral osteomyelitis cases complicated by bacteremia treated with high-dose daptomycin and trimethoprim-sulfamethoxazole. Antimicrob Agents Chemother. 2012;56:5990–5993.
  • Koton Y, Or Z, Bisharat N. Septic thrombophlebitis with persistent methicillin-resistant Staphylococcus aureus bacteremia and de novo resistance to vancomycin and daptomycin. Infect Dis Rep. 2017;9:7008.
  • Fabre V, Ferrada M, Buckel WR, et al. Ceftaroline in combination with trimethoprim-sulfamethoxazole for salvage therapy of methicillin-resistant Staphylococcus aureus bacteremia and endocarditis. Open Forum Infect Dis. 2014;1:ofu046.
  • Bagnoli F. Staphylococcus aureus toxin antibodies: good companions of antibiotics and vaccines. Virulence. 2017 Mar 7:1–6 [Epub ahead of print. DOI:10.1080/21505594.2017.1295205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.