408
Views
0
CrossRef citations to date
0
Altmetric
Review

New anti-pseudomonal agents for cystic fibrosis- still needed in the era of small molecule CFTR modulators?

&
Pages 1327-1336 | Received 25 May 2018, Accepted 26 Jul 2018, Published online: 12 Aug 2018

References

  • UK Cystic Fibrosis Registry Annual Data Report 2016. [cited Jul 25] https://www.cysticfibrosis.org.uk/~/media/documents/the-work-we-do/uk-cf-registry/uk-cf-registry-annual-data-report-2016.ashx?la+en
  • Fajac I, Viel M, Gaitch N, et al. Combination of ENaC and CFTR mutations may predispose to cystic fibrosis-like disease. Eur Respir J. 2009 Sep;34(3):772–773.
  • Horisberger JD. ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model. Pflugers Arch. 2003 Jan;445(4):522–528.
  • Matsui H, Grubb BR, Tarran R, et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airway disease. Cell. 1998 Dec 23;1998(95):1005–1015.
  • Pezzulo AA, Tang XX, Hoegger MJ, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012 Jul 4;487(7405):109–113.
  • Schultz A, Puvvadi R, Borisov SM, et al. Airway surface liquid pH is not acidic in children with cystic fibrosis. Nat Commun. 2017 Nov 10;8(1):1409.
  • Kostikas K, Papatheodorou G, Ganas K, et al. pH in expired breath condensate of patients with inflammatory airway diseases. Am J Respir Crit Care Med. 2002 May 15;165(10):1364–1370.
  • Kodric M, Shah AN, Fabbri LM, et al. An investigation of airway acidification in asthma using induced sputum: a study of feasibility and correlation. Am J Respir Crit Care Med. 2007 May 01;175(9):905–910.
  • Saiman L, Siegel J. Infection control in cystic fibrosis. Clin Microbiol Rev. 2004;17(1):57–71.
  • Saiman L, Siegel JD, LiPuma JJ, et al. Infection prevention and control guideline for cystic fibrosis: 2013 update. Infect Control Hosp Epidemiol. 2014 Aug;35(Suppl 1):S1–S67.
  • Giron RM, Maiz L, Barrio I, et al. [Nontuberculous mycobacterial infection in patients with cystic fibrosis: a multicenter prevalence study]. Arch Bronconeumol. 2008 Dec;44(12):679–684.
  • Seddon P, Fidler K, Raman S, et al. Prevalence of nontuberculous mycobacteria in cystic fibrosis clinics, United Kingdom, 2009. Emerg Infect Dis. 2013;19(7):1128–1130.
  • Adjemian J, Olivier KN, Prevots DR. Nontuberculous mycobacteria among patients with cystic fibrosis in the United States: screening practices and environmental risk. Am J Respir Crit Care Med. 2014 Sep 1;190(5):581–586.
  • Qvist T, Gilljam M, Jonsson B, et al. Epidemiology of nontuberculous mycobacteria among patients with cystic fibrosis in Scandinavia. J Cyst Fibros. 2015 Jan;14(1):46–52.
  • Bar-On O, Mussaffi H, Mei-Zahav M, et al. Increasing nontuberculous mycobacteria infection in cystic fibrosis. J Cyst Fibros. 2015 Jan;14(1):53–62.
  • Surette MG. The cystic fibrosis lung microbiome. Ann Am Thorac Soc. 2014 Jan;11(Suppl 1):S61–S5.
  • Dickson RP, Erb-Downward JR, Martinez FJ, et al. The microbiome and the respiratory tract. Annu Rev Physiol. 2016;78:481–504.
  • Huang YJ, LiPuma JJ. The microbiome in cystic fibrosis. Clin Chest Med. 2016 Mar;37(1):59–67.
  • Johansen HK, Hoiby N. Seasonal onset of initial colonisation and chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis in Denmark. Thorax. 1992 Feb;47(2):109–111.
  • Langton Hewer SC, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev. 2014 Nov;10(11):CD004197.
  • Schuster M, Greenberg EP. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol. 2006 Apr;296(2–3):73–81.
  • Hauser AR, Jain M, Bar-Meir M, et al. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev. 2011 Jan;24(1):29–70.
  • Dufour DLV, Levesque CM. Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Topics. 2012;22:2–16.
  • Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol. 2007 Dec;10(6):644–648.
  • Singh PK, Schaefer AL, Parsek MR, et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000 Oct 12;407(6805):762–764.
  • Emerson J, Rosenfeld M, McNamara S, et al. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol. 2002 Aug;34(2):91–100.
  • Robinson TE, Leung AN, Chen X, et al. Cystic fibrosis HRCT scores correlate strongly with Pseudomonas infection. Pediatr Pulmonol. 2009 Nov;44(11):1107–1117.
  • Aaron SV, Ramotar KL, Giesbrecht-Lewis K, et al. Infection with transmissible strains of pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. J Am Microbiol Assoc. 2010 Nov 17;304(19):2145–3153.
  • Torpedo-Cf NIHR. 2018 [2018 Feb 25]; The TORPEDO-CF trial is funded by NIHR. The information contained in this website is for general information about the TORPEDO-CF trial and is provided by The University of Liverpool Clinical Trials Research Centre.]. Available from: http://www.torpedo-cf.org.uk/
  • Ahmed B, Bush A, Davies JC. How to use: bacterial cultures in diagnosing lower respiratory tract infections in cystic fibrosis. Arch Dis Child Educ Pract Ed. 2014 Oct;99(5):181–187.
  • Pabary R, Huang J, Kumar S, et al. Selective ion-flow mass spectrometry (SIFT-MS) analysis of exhaled breath as a non-invasive determinant of Pseudomonas aeruginosa infection in CF patients. J Cystic Fibrosis. 2014;13(2):S34.
  • Robinson M, Bye PTB. Mucociliary clearance in cystic fibrosis. Pediatr Pulmonol. 2002 Apr;33(4):293–306.
  • Flume PA, Mogayzel PJ Jr., Robinson KA, et al. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med. 2009 Nov 1;180(9):802–808.
  • Hoiby N. Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. BMC Med. 2011 Apr 4;9:32.
  • Aloush V, Navon-Venezia S, Seigman-Igra Y, et al. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006 Jan;50(1):43–48.
  • Smith AL, Fiel SB, Mayer-Hamblett N, et al. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest. 2003;123:1495–1502.
  • Barraud N, Hassett DJ, Hwang S-H, et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 2006 Nov;188(21):7344–7353.
  • Howlin RP, Cathie K, Hall-Stoodley L, et al. Low-dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic pseudomonas aeruginosa infection in cystic fibrosis. Mol Ther. 2017 Sep 6;25(9):2104–2116.
  • Yepuri NR, Barraud N, Mohammadi NS, et al. Synthesis of cephalosporin-3ʹ-diazeniumdiolates: biofilm dispersing NO-donor prodrugs activated by beta-lactamase. Chem Commun. 2013 May 25;49(42):4791–4793.
  • Kutty SK, Barraud N, Ho KK, et al. Hybrids of acylated homoserine lactone and nitric oxide donors as inhibitors of quorum sensing and virulence factors in Pseudomonas aeruginosa. Org Biomol Chem. 2015 Oct 14;13(38):9850–9861.
  • Tateda K, Comte R, Pechere JC, et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2001 Jun;45(6):1930–1933.
  • Bjarnsholt T, Jensen PO, Rasmussen TB, et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology. 2005 Dec;151(Pt 12):3873–3880.
  • Persson T, Hansen TH, Rasmussen TB, et al. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem. 2005 Jan 21;3(2):253–262.
  • Smyth AR, Cifelli PM, Ortori CA, et al. Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis–a pilot randomized controlled trial. Pediatr Pulmonol. 2010 Apr;45(4):356–362.
  • Khan S, Tondervik A, Sletta H, et al. Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrob Agents Chemother. 2012 Oct;56(10):5134–5141.
  • Tosco A, De Gregorio F, Esposito S, et al. A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR. Cell Death Differ. 2016 Aug;23(8):1380–1393.
  • Ferrari E, Monzani R, Villella VR, et al. Cysteamine re-establishes the clearance of Pseudomonas aeruginosa by macrophages bearing the cystic fibrosis-relevant F508del-CFTR mutation. Cell Death Dis. 2017 Jan 12;8(1):e2544.
  • Brussow H. What is needed for phage therapy to become a reality in Western medicine? Virology. 2012 Dec 20;434(2):138–142.
  • Wright A, Hawkins CH, Anggard EE, et al. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiot ic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34:349–357.
  • Pabary R, Singh C, Morales S, et al. Antipseudomonal bacteriophage reduces infective burden and inflammatory response in murine lung. Antimicrob Agents Chemother. 2016 Feb;60(2):744–751.
  • Martin I, Davies JC, Morales S, et al. WS07.4 Combined killing effects of lytic bacteriophages and antibiotics in biofilm-grown Pseudomonas aeruginosa from CF airway cultures. J Cystic Fibrosis. 2017;16:S12–S13.
  • Johansen HK, Gotzsche PC. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis. Cochrane Database Syst Rev. 2015 Aug;23(8):CD001399.
  • Thomsen K, Christophersen L, Bjarnsholt T, et al. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model. J Cyst Fibros. 2016 Mar;15(2):171–178.
  • Milla CE, Chmiel JF, Accurso FJ, et al. Anti-PcrV antibody in –cystic fibrosis: a novel approach targeting Pseudomonas aeruginosa airway infection. Pediatr Pulmonol. 2014 Jul;49(7):650–658.
  • Jain R, Beckett VV, Konstan MW, et al. KB001-A Study Group. KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in cystic fibrosis patients infected with Pseudomonas aeruginosa. J Cyst Fibros. 2018 Jul;17(4):484–491.
  • Lu Q, Rouby JJ, Laterre PF, et al. Pharmacokinetics and safety of panobacumab: specific adjunctive immunotherapy in critical patients with nosocomial Pseudomonas aeruginosa O11 pneumonia. J Antimicrob Chemother. 2011 May;66(5):1110–1116.
  • Galietta LJ. Managing the underlying cause of cystic fibrosis: a future role for potentiators and correctors. Paediatric Drugs. 2013 Oct;15(5):393–402.
  • Ramsey BW, Davies J, McElvaney NG, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011 Nov 3;365(18):1663–1672.
  • Fidler MC, Beusmans J, Panorchan P, et al. Correlation of sweat chloride and percent predicted FEV1 in cystic fibrosis patients treated with ivacaftor. J Cyst Fibros. 2017 Jan;16(1):41–44.
  • Davies JC, Cunningham S, Harris WT, et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2–5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med. 2016;4(2):107–115.
  • Brewington JJ, McPhail GL, Clancy JP. Lumacaftor alone and combined with ivacaftor: preclinical and clinical trial experience of F508del CFTR correction. Expert Rev Respir Med. 2016;10(1):5–17.
  • Wainwright CE, Elborn JS, Ramsey BW, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for phe508del CFTR. N Engl J Med. 2015 Jul 16;373(3):220–231.
  • Rowe SM, Daines C, Ringshausen FC, et al. Tezacaftor-ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med. 2017 Nov 23;377(21):2024–2035.
  • Taylor-Cousar JL, Munck A, McKone EF, et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med. 2017 Nov 23;377(21):2013–2023.
  • Tullis E, Colombo C, Davies JC, et al. Preliminary safety and efficacy of triple combination cftr modulator regimens in cystic fibrosis. Pediatr Pulmonol. 2017;52(S47):#246.
  • Drug Development Pipeline. 2018 [cited 2018 Feb 25]; Available from: https://www.cff.org/Trials/Pipeline
  • Sawicki GS, McKone EF, Pasta DJ, et al. Sustained benefit from ivacaftor demonstrated by combining clinical trial and cystic fibrosis patient registry data. Am J Respir Crit Care Med. 2015 Oct 1;192(7):836–842.
  • A Study to Evaluate the Safety, Pharmacokinetics, and Pharmacodynamics of Ivacaftor in Subjects With Cystic Fibrosis Who Are Less Than 24 Months of Age and Have a CFTR Gating Mutation. 2017 [cited 2018 Feb 25];
  • Rowe SM, Heltshe SL, Gonska T, et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med. 2014 Jul 15;190(2):175–184.
  • Heltshe SL, Mayer-Hamblett N, Burns JL, et al. Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. Clin Infect Dis. 2015 Mar 1;60(5):703–712.
  • Hubert D, Dehillotte C, Munck A, et al. Retrospective observational study of French patients with cystic fibrosis and a Gly551Asp-CFTR mutation after 1 and 2 years of treatment with ivacaftor in a real-world setting. J Cyst Fibros. 2018 Jan;17(1):89–95.
  • Hoffman L, Pope C, Jorth P, et al. Short-term and long-term effects of ivacaftor treatment on sputum microbiota in cf patients with the G551d Cftr mutation. Am J Respir Crit Care Med. 2016;193:A2885.
  • Hisert KB, Heltshe SL, Pope C, et al. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med. 2017 Jun 15;195(12):1617–1628.
  • Strang A, Fischer AJ, Chidekel A. Pseudomonas eradication and clinical effectivness of Ivacaftor in four hispanic patients with S549N. Pediatr Pulmonol. 2017 Jul;52(7):E37–E39.
  • Reznikov LR, Abou Alaiwa MH, Dohrn CL, et al. Antibacterial properties of the CFTR potentiator ivacaftor. J Cyst Fibros. 2014 Sep;13(5):515–519.
  • Schneider EK, Azad MA, Han ML, et al. An “unlikely” pair: the antimicrobial synergy of polymyxin B in combination with the cystic fibrosis transmembrane conductance regulator drugs KALYDECO and ORKAMBI. ACS Infect Dis. 2016 Jul 8;2(7):478–488.
  • Cho DY, Lim DJ, Mackey C, et al. l-Methionine anti-biofilm activity against Pseudomonas aeruginosa is enhanced by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor. Int Forum Allergy Rhinol. 2018 Feb7;5(8):577–583.
  • Barnaby R, Koeppen K, Nymon A, et al. Lumacaftor (VX-809) restores the ability of CF macrophages to phagocytose and kill Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 2017 Nov 16;314(3):432–438.
  • Pohl K, Hayes E, Keenan J, et al. A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy. Blood. 2014 Aug 14;124(7):999–1009.
  • McCarron A, Donnelley M, Parsons D. Airway disease phenotypes in animal models of cystic fibrosis. Respir Res. 2018 Apr 2;19(1):54.
  • Sun X, Sui H, Fisher JT, et al. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest. 2010 Sep;120(9):3149–3160.
  • Tuggle KL, Birket SE, Cui X, et al. Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PloS One. 2014;9(3):e91253.
  • Bratcher PE, Rowe SM, Reeves G, et al. Alterations in blood leukocytes of G551D-bearing cystic fibrosis patients undergoing treatment with ivacaftor. J Cystic Fibrosis: off J Eur Cystic Fibrosis Soc. 2016 Jan;15(1):67–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.