481
Views
16
CrossRef citations to date
0
Altmetric
Review

Chemical management of levodopa-induced dyskinesia in Parkinson’s disease patients

, , &
Pages 219-230 | Received 20 Jul 2018, Accepted 30 Oct 2018, Published online: 09 Nov 2018

References

  • Siderowf A, Stern M. Update on Parkinson disease. Ann Inter Med. 2003;138(8):651–658.
  • Bjornestad A, Forsaa EB, Pedersen KF, et al. Risk and course of motor complications in a population-based incident Parkinson’s disease cohort. Park Relat Disord. 2016;22:48–53.
  • Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–458.
  • Bargiotas P, Konitsiotis S. Levodopa-induced dyskinesias in Parkinson’s disease: emerging treatments. Neuropsychiatr Dis Treat. 2013;9:1605–1617.
  • Péchevis M, Clarke CE, Vieregge P, et al. Effects of dyskinesias in Parkinson’s disease on quality of life and health-related costs: A prospective European study. Eur J Neurol. 2005;12(12):956–963.
  • Rascol O, Brooks DJ, Korczyn AD, et al. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med. 2000;342(20):1484–1491.
  • Pilleri M, Antonini A. Therapeutic strategies to prevent and manage dyskinesias in Parkinson’s disease. Expert Opin Drug Saf. 2015;14(2):281–294.
  • Jankovic J. Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord. 2005;20(Suppl 11):11–16.
  • Bastide MF, Meissner WG, Picconi B, et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol. 2015;132:96–168.
  • Matarazzo M, Perez-Soriano A, Stoessl AJ. Dyskinesias and levodopa therapy: why wait? J Neural Transm. 2018;125(8):1119–1130.
  • Kostić VS. Treatment of young-onset Parkinson’s disease: role of dopamine receptor agonists. Parkinsonism Relat Disord. 2009;15(Suppl 4):S71–5.
  • Warren Olanow C, Kieburtz K, Rascol O, et al. Factors predictive of the development of levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013;28(8):1064–1071.
  • De La Fuente-Fernández R, Sossi V, Huang Z, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain. 2004;127(Pt 12):2747–2754.
  • Linazasoro G. New ideas on the origin of L-dopa-induced dyskinesias: age, genes and neural plasticity. Trends Pharmacol Sci. 2005;26(8):391–397.
  • Nicoletti A, Mostile G, Nicoletti G, et al. Clinical phenotype and risk of levodopa-induced dyskinesia in Parkinson’s disease. J Neurol. 2016;263(5):888–894.
  • Perez-Lloret S, Negre-Pages L, Damier P, et al. L-DOPA-induced dyskinesias, motor fluctuations and health-related quality of life: the COPARK survey. Eur J Neurol. 2017;24(12):1532–1538.
  • Cilia R, Akpalu A, Sarfo FS, et al. The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa. Brain. 2014;137(Pt 10):2731–2742.
  • Hong JY, Oh JS, Lee I, et al. Presynaptic dopamine depletion predicts levodopa-induced dyskinesia in de novo Parkinson disease. Neurology. 2014;82(18):1597–1604.
  • Stocchi F, Marconi S. Factors associated with motor fluctuations and dyskinesia in Parkinson disease: potential role of a new melevodopa plus carbidopa formulation (Sirio). Clin Neuropharmacol. 2010;33(4):198–203.
  • Parkinson Study Group, Fahn S, Oakes D, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351(24):2498–2508.
  • Jankovic J. Parkinson’s disease therapy: tailoring choices for early and late disease, young and old patients. Clin Neuropharmacol. 2000;23(5):252–261.
  • Fabbrini G, Brotchie JM, Grandas F, et al. Levodopa-induced dyskinesias. Mov Disord. 2007;22(10):1379–1389.
  • Di Monte DA, McCormack A, Petzinger G, et al. Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov Disord. 2000;15(3):459–466.
  • Paillé V, Brachet P, Damier P. Role of nigral lesion in the genesis of dyskinesias in a rat model of Parkinson’s disease. Neuroreport. 2004;15(3):561–564.
  • Aubert I, Guigoni C, Håkansson K, et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol. 2005;57(1):17–26.
  • Linazasoro G, Van Blercom N, Bergaretxe A, et al. Levodopa-induced dyskinesias in parkinson disease are independent of the extent of striatal dopaminergic denervation: A pharmacological and SPECT study. Clin Neuropharmacol. 2009;32(6):326–329.
  • Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2(8):577–588.
  • Lewitt PA, Fahn S. Levodopa therapy for Parkinson disease. Am Acad Neurol. 2016;86:S3–12.
  • Brotchie JM. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord. 2005;20(8):919–931.
  • Nutt JG. Continuous dopaminergic stimulation: is it the answer to the motor complications of levodopa? Mov Disord. 2007;22(1):1–9.
  • Nadjar A, Gerfen CR, Bezard E. Priming for l-dopa-induced dyskinesia in Parkinson’s disease: A feature inherent to the treatment or the disease? Prog Neurobiol. 2009;87(1):1–9.
  • Jenner P. Wearing off, dyskinesia, and the use of continuous drug delivery in Parkinson’s disease. Neurol Clin. 2013;31(3):S17–35.
  • Cenci MA. Presynaptic mechanisms of L-DOPA-induced dyskinesia: the findings, the debate, the therapeutic implications. Front Neurol. 2014;5:1–15.
  • Sharma S, Singh S, Sharma V, et al. Neurobiology of L-DOPA induced dyskinesia and the novel therapeutic strategies. Biomed Pharmacother. 2015;70:283–293.
  • Schaeffer E, Pilotto A, Berg D. Pharmacological strategies for the management of levodopa-induced dyskinesia in patients with parkinson’s disease. CNS Drugs. 2014;28(12):1155–1184.
  • Herz DM, Haagensen BN, Christensen MS, et al. The acute brain response to levodopa heralds dyskinesias in Parkinson disease. Ann Neurol. 2014;75(6):829–836.
  • Santini E, Valjent E, Fisone G. Parkinson’s disease: levodopa-induced dyskinesia and signal transduction. FEBS J. 2008;275(7):1392–1399.
  • Picconi B, de Leonibus E, Calabresi P. Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities. J Neural Transm (Vienna). 2018;125(8):1263–1271.
  • Suárez LM, Solís O, Caramés JM, et al. L-DOPA treatment selectively restores spine density in dopamine receptor d2-expressing projection neurons in dyskinetic mice. Biol Psychiatry. 2014;75(9):711–722.
  • Calon F, Rajput AH, Hornykiewicz O, et al. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis. 2003;14(3):404–416.
  • Ouattara B, Hoyer D, Grégoire L, et al. Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience. 2010;167(4):1160–1167.
  • Ahmed I, Bose SK, Pavese N, et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain. 2011;134(Pt 4):979–986.
  • Quik M, Mallela A, Ly J, et al. Nicotine reduces established levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord. 2013;28(10):1398–1406.
  • Buck K, Ferger B. The selective alpha1 adrenoceptor antagonist HEAT reduces L-DOPA-induced dyskinesia in a rat model of Parkinson’s disease. Synapse. 2010;64(2):117–126.
  • Cerasa A, Messina D, Pugliese P, et al. Increased prefrontal volume in PD with levodopa-induced dyskinesias: a voxel-based morphometry study. Mov Disord. 2011;26(5):807–812.
  • Cerasa A, Koch G, Donzuso G, et al. A network centred on the inferior frontal cortex is critically involved in levodopa-induced dyskinesias. Brain. 2015;138(Pt 2):414–427.
  • Bibbiani F, Costantini LC, Patel R, et al. Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol. 2005;192(1):73–78.
  • Jenner P. Avoidance of dyskinesia: preclinical evidence for continuous dopaminergic stimulation. Neurology. 2004;62(1 Suppl 1):S47–55.
  • Holloway RG, Shoulson I, Fahn S, et al. Pramipexole vs levodopa as initial treatment for Parkinson Disease: a 4-year randomized controlled trial. Arch Neurol. 2004;61(7):1044–1053.
  • Watts RL, Lyons KE, Pahwa R, et al. Onset of dyskinesia with adjunct ropinirole prolonged-release or additional levodopa in early Parkinson’s disease. Mov Disord. 2010;25(7):858–866.
  • Holloway R, Marek K, Biglan K, et al. Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Arch Neurol. 2009;66(5):563–570.
  • Oertel WH, Wolters E, Sampaio C, et al. Pergolide versus levodopa monotherapy in early Parkinson’s disease patients: the PELMOPET study. Mov Disord. 2006;21(3):343–353.
  • Katzenschlager R, Head J, Schrag A, et al. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology. 2008;71(7):474–480.
  • Gray R, Ives N, Rick C, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384(9949):1196–1205.
  • Fox SH, Katzenschlager R, Lim SY, et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2018;33(8):1248–1266.
  • Hauser RA, Olanow CW, Kieburtz KD, et al. Tozadenant (SYN115) in patients with Parkinson’s disease who have motor fl uctuations on levodopa: a phase 2b, double-blind, randomised trial. Lancet Neurol. 2014;13(8):767–776.
  • Payer DE, Guttman M, Kish SJ, et al. D3 dopamine receptor-preferring [11 C] PHNO PET imaging in Parkinson patients with dyskinesia. Neurology. 2016;86(3):224–230.
  • Khan TS. Off spells and dyskinesias: pharmacologic management of motor complications. Cleve Clin J Med. 2012;79(Suppl 2):S8–13.
  • Mazzucchi S, Frosini D, Bonuccelli U, et al. Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today (Barc). 2015;51(5):315–329.
  • Rascol O, Perez-Lloret S, Ferreira JJ. New treatments for levodopa-induced motor complications. Mov Disord. 2015;30(11):1451–1460.
  • Dakheel AA, Beaulieu-Boire I, Fox SH. Emerging drugs for levodopa-induced dyskinesia. Expert Opin Emerg Drugs. 2014;19(3):415–429.
  • Hauser RA. IPX066: A novel carbidopa-levodopa extended-release formulation. Expert Rev Neurother. 2012;12(2):133–140.
  • Lees AJ, Ferreira J, Rascol O, et al. Opicapone for the management of end-of-dose motor fluctuations in patients with Parkinson’s disease treated with L-DOPA. Expert Rev Neurother. 2017;17(7):649–659.
  • Ferreira JJ, Lees AJ, Poewe W, et al. Effectiveness of opicapone and switching from entacapone in fluctuating Parkinson disease. Neurology. 2018;90(21):e1849–57.
  • Svetel M, Tomic A, Kresojevic N, et al. Pharmacokinetic drug evaluation of opicapone for the treatment of Parkinson’s disease. Expert Opin Drug Metab Toxicol. 2018;14(3):353–360.
  • Katzenschlager R, Hughes A, Evans A, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: A prospective study using single-dose challenges. Mov Disord. 2005;20(2):151–157.
  • García Ruiz PJ, Sesar Ignacio A, Ares Pensado B, et al. Efficacy of long-term continuous subcutaneous apomorphine infusion in advanced Parkinson’s disease with motor fluctuations: a multicenter study. Mov Disord. 2008;23(8):1130–1136.
  • Katzenschlager R, Poewe W, Rascol O, et al. Apomorphine subcutaneous infusion in patients with Parkinson’s disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2018;4422(18):1–11.
  • Nyholm D, Odin P, Johansson A, et al. Pharmacokinetics of levodopa, carbidopa, and 3-o-methyldopa following 16-hour jejunal infusion of levodopa-carbidopa intestinal gel in advanced Parkinson’s disease patients. Aaps J. 2013;15(2):316–323.
  • Olanow CW, Kieburtz K, Odin P, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: A randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13(2):141–149.
  • Cáceres-Redondo MT, Carrillo F, Lama MJ, et al. Long-term levodopa/carbidopa intestinal gel in advanced Parkinson’s disease. J Neurol. 2014;261(3):561–569.
  • Fernandez HH, Boyd JT, Fung VSC, et al. Long-term safety and efficacy of levodopa-carbidopa intestinal gel in advanced Parkinson’s disease. Mov Disord. 2018;33(6):928–936.
  • Benarroch EE. Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology. 2008;70(3):231–236.
  • Calon Â, Dridi M, Hornykiewicz O, et al. Increased adenosine A 2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain. 2004;127(5):1075–1084.
  • Pinna A. Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs. 2014;28(5):455–474.
  • Tao Y, Liang G. Efficacy of adenosine A2A receptor antagonist istradefylline as augmentation for Parkinson’s disease: a meta-analysis of randomized controlled trials. Cell Biochem Biophys. 2015;71(1):57–62.
  • Zhu C, Wang G, Li J, et al. Adenosine A2A receptor antagonist istradefylline 20 versus 40 mg/day as augmentation for Parkinson’s disease: a meta-analysis. Neurol Res. 2014;36(11):1028–1034.
  • Mizuno Y, Hasegawa K, Kondo T, et al. Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord. 2010;25(10):1437–1443.
  • Mizuno Y, Kondo T. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s sisease. Mov Disord. 2013;28(8):1138–1141.
  • Pourcher E, Fernandez HH, Stacy M, et al. Istradefylline for Parkinson’s disease patients experiencing motor fluctuations: results of the KW-6002-US-018 study. Park Relat Disord. 2012;18(2):178–184.
  • Lewitt PA, Guttman M, Tetrud JW, et al. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol. 2008;63(3):295–302.
  • Hauser RA, Shulman LM, Trugman JM, et al. Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord. 2008;23(15):2177–2185.
  • Stacy M, Silver D, Mendis T, et al. A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology. 2008;70(23):2233–2240.
  • Fernandez H, Greeley D, Zweig R, et al. Istradefylline as monotherapy for Parkinson disease: results of the 6002-US-051 trial. Park Relat Disord. 2010;16(1):16–20.
  • Hauser RA, Cantillon M, Pourcher E, et al. Preladenant in patients with Parkinson’s disease and motor fl uctuations: a phase 2, double-blind, randomised trial. Lancet Neurol. 2011;10(3):221–229.
  • Hauser RA, Stocchi F, Rascol O, et al. Preladenant as an adjunctive therapy with levodopa in Parkinson disease: two randomized clinical trials and lessons learned. JAMA Neurol. 2015;72(12):1491–1500.
  • Wills -A-A-A, Eberly S, Tennis M, et al. Caffeine consumption and risk of dyskinesia in CALM-PD. Mov Disord. 2013;28(3):380–383.
  • Suzuki K, Miyamoto T, Miyamoto M, et al. Could istradefylline be a treatment option for postural abnormalities in mid-stage Parkinson’s disease? J Neurol Sci. 2018;385(November2017):131–133.
  • Lewitt PA, Hauser RA, Lu M, et al. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology. 2012;79(2):163–169.
  • Durif F, Debilly B, Galitzky M, et al. Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology. 2004;62(3):381–388.
  • Murray AM, Waddington JL. The interaction of clozapine with dopamine D1 versus dopamine D2 receptor-mediated function: behavioural indices. Eur J Pharmacol. 1990;186(1):79–86.
  • Politis M, Wu K, Loane C, et al. Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J Clin Invest. 2014;124(3):1340–1349.
  • Fox SH. Non-dopaminergic treatments for motor control in Parkinson’s disease. Drugs. 2013;73(13):1405–1415.
  • Katzenschlager R, Manson AJ, Evans A, et al. Low dose quetiapine for drug induced dyskinesias in Parkinson’s disease: a double blind cross over study. J Neurol Neurosurg Psychiatry. 2004;75(2):295–297.
  • Duty S. Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson’s disease. CNS Drugs. 2012;26:1017–1032.
  • Hubsher G, Haider M, Okun MS. Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology. 2012;78(14):1096–1099.
  • Schwab RS, England AC, Poskanzer DC, et al. Amantadine in the treatment of Parkinson’s disease. JAMA. 1969;208:1168–1170.
  • Metman LV, Del Dotto P, van Den Munckhof P, et al. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology. 1998;50(5):1323–1326.
  • Luginger E, Wenning GK, Bösch S, et al. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000;15(5):873–878.
  • Snow BJ, Macdonald L, Mcauley D, et al. The effect of amantadine on levodopa-induced dyskinesias in Parkinson’s disease: a double-blind, placebo-controlled study. Clin Neuropharmacol. 2000;23(2):82–85.
  • Ferreira JJ, Katzenschlager R, Bloem BR, et al. Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson’s disease. Eur J Neurol. 2013;20(1):5–15.
  • Thomas A, Iacono D, Luciano AL, et al. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75(1):141–143.
  • Wolf E, Seppi K, Katzenschlager R, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord. 2010;25(10):1357–1363.
  • Ory-Magne F, Corvol JC, Azulay JP, et al. Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology. 2014;82(4):300–307.
  • Pahwa R, Tanner CM, Hauser RA, et al. Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov Disord. 2015;30(6):788–795.
  • Hauser RA, Pahwa R, Tanner CM, et al. ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 2 study): interim results of an open-label safety study. J Parkinsons Dis. 2017;7(3):511–522.
  • Oertel W, Eggert K, Pahwa R, et al. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 3). Mov Disord. 2017;32(12):1701–1709.
  • Sharma VD, Lyons KE, Pahwa R. Amantadine extended-release capsules for levodopa-induced dyskinesia in patients with Parkinson’s disease. Ther Clin Risk Manag. 2018;14:665–673.
  • Trenkwalder C, Stocchi F, Poewe W, et al. Mavoglurant in Parkinson’s patients with l-dopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord. 2016;31(7):1054–1058.
  • Stocchi F, Rascol O, Destee A, et al. AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov Disord. 2013;28(13):1838–1846.
  • Rascol O, Fox S, Gasparini F, et al. Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Park Relat Disord. 2014;20(9):947–956.
  • Tison F, Keywood C, Wakefield M, et al. A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord. 2016;31(9):1373–1380.
  • Iderberg H, Maslava N, Thompson AD, et al. Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson’s disease and L-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist. Neuropharmacology. 2015;95:121–129.
  • Nutt JG, Gunzler SA, Kirchhoff T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101, 606, on dyskinesia and parkinsonism. Mov Disord. 2008;23(13):1860–1866.
  • Wictorin K, Memantine WH. Memantine and reduced time with dyskinesia in Parkinson`s disease. Acta Neurol Scand. 2016;133(5):355–360.
  • Bara-Jimenez W, Dimitrova TD, Sherzai A, et al. Glutamate release inhibition ineffective in levodopa-induced motor complications. Mov Disord. 2006;21(9):1380–1383.
  • Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, et al. Eltoprazine counteracts L-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain. 2015;138:963–973.
  • Sampaio C, Bronzova J, Hauser RA, et al. Pardoprunox in early Parkinson’s disease: results from 2 large, randomized double-blind trials. Mov Disord. 2011;26(8):1464–1476.
  • Rascol O, Bronzova J, Hauser RA, et al. Pardoprunox as adjunct therapy to levodopa in patients with Parkinson’s disease experiencing motor fluctuations: results of a double-blind, randomized, placebo-controlled, trial. Park Relat Disord. 2012;18(4):370–376.
  • Schapira AH, Fox SH, Hauser RA, et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with Parkinson disease and motor fluctuations a randomized clinical trial. JAMA Neurol. 2017;74(2):216–224.
  • Borgohain R, Szasz J, Stanzione P, et al. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord. 2014;29(10):1273–1280.
  • Murata M, Hasegawa K, Kanazawa I, et al. Zonisamide improves wearing-off in Parkinson’s disease: a randomized, double-blind study. Mov Disord. 2015;30(10):1343–1350.
  • Stathis P, Konitsiotis S, Tagaris G, et al. Group on B of V-PS. Levetiracetam for the management of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2011;26(2):264–270.
  • Wolz M, Lohle M, Strecker K, et al. Levetiracetam for levodopa-induced dyskinesia in Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. J Neural Transm. 2010;117(11):1279–1286.
  • Biundo R, Weis L, Abbruzzese G, et al. Impulse control disorders in advanced Parkinson’s disease with dyskinesia: the ALTHEA study. Mov Disord. 2017;32(11):1557–1565.
  • Sintov AC, Levy HV, Greenberg I. Continuous transdermal delivery of L-DOPA based on a self-assembling nanomicellar system. Pharm Res. 2017;37(4):1459–1468.
  • Iderberg H, Rylander D, Bimpisidis Z, et al. Modulating mGluR5 and 5-HT1A/1B receptors to treat L-DOPA-induced dyskinesia: effects of combined treatment and possible mechanisms of action. Exp Neurol. 2013;250:116–124.
  • Pinna A, Wai Kin KD, Costa G, et al. Antidyskinetic effect of A2A and 5HT 1A/1B receptor ligands in two animal models of Parkinson’s disease. Mov Disord. 2016;31(4):501–511.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.