1,061
Views
12
CrossRef citations to date
0
Altmetric
Review

Promising therapies for the treatment of frontotemporal dementia clinical phenotypes: from symptomatic to disease-modifying drugs

ORCID Icon, , , , , , , , , , , , & ORCID Icon show all
Pages 1091-1107 | Received 12 Oct 2018, Accepted 19 Mar 2019, Published online: 19 Apr 2019

References

  • Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386:1672–1682.
  • Vieira RT, Caixeta L, Machado S, et al. Epidemiology of early-onset dementia: a review of the literature. Clin Pract Epidemiol Ment Health. 2013;9:88–95.
  • Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–2477.
  • Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–1014.
  • Höglinger GU, Respondek G, Stamelou M, et al. Movement disorder society-endorsed PSP study group clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32:853–864.
  • Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80(5):496–503.
  • Capozzo R, Sassi C, Hammer MB, et al. Clinical and genetic analyses of familial and sporadic frontotemporal dementia patients in Southern Italy. Alzheimers Dement. 2017;13:858–869.
  • Coyle-Gilchrist IT, Dick KM, Patterson K, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology. 2016;86:1736–1743.
  • Josephs KA. Frontotemporal dementia and related disorders: deciphering the enigma. Ann Neurol. 2008;64:4–14.
  • Josephs KA, Hodges JR, Snowden JS, et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 2011;122:137–153.
  • Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5‘-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393:702–705.
  • Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–133.
  • Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323:1205–1208.
  • Bronner IF, Ter Meulen BC, Azmani A, et al. Hereditary Pick‘s disease with the G272V tau mutation shows predominant three-repeat tau pathology. Brain. 2005;128:2645–2653.
  • Chambers CB, Lee JM, Troncoso JC, et al. Overexpression of four-repeat tau mRNA isoforms in progressive supranuclear palsy but not in Alzheimer‘s disease. Ann Neurol. 1999;46:325–332.
  • Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol. 1998;8:387–402.
  • Togo T, Sahara N, Sh Y, et al. Argyrophilic grain disease is a sporadic 4-repeat tauopathy. J Neuropathol Exp Neurol. 2002;61:547–556.
  • Mackenzie IR, Baborie A, Pickering-Brown S, et al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol. 2006;112:539–549.
  • Sampathu DM, Neumann M, Kwong LK, et al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol. 2006;169:1343–1352.
  • Cairns NJ, Grossman M, Arnold SE, et al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology. 2004;63:1376–1384.
  • Kusaka H, Matsumoto S. Imai T An adult-onset case of sporadic motor neuron disease with basophilic inclusions. Acta Neuropathol. 1990;80:660–665.
  • Mackenzie IR, Foti D, Woulfe J, et al. Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain. 2008;131:1282–1293.
  • Urwin H, Josephs KA, Rohrer JD, et al. FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol. 2010;120:33–41.
  • Rohrer JD, Guerreiro R, Vandrovcova J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology. 2009;73:1451–1456.
  • Le Ber I. Genetics of frontotemporal lobar degeneration: an up-date and diagnosis algorithm. Rev Neurol. 2013;169:811–819.
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9orf72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–256.
  • Mackenzie IR, Baker M, Pickering-Brown S, et al. The neuropathology of frontotemporallobar degeneration caused by mutations in the progranulin gene. Brain. 2006;129:3081–3090.
  • Masellis M, Momeni P, Meschino W, et al. Novel splicing mutation in the progranulingene causing familial corticobasal syndrome. Brain. 2006;129:3115–3123.
  • Moreno F, Indakoetxea B, Barandiaran M, et al. “Frontotemporoparietal” dementia: clinicalphenotype associated with the c.709–1G>A PGRN mutation. Neurology. 2009;73:1367–1374.
  • Ghetti B, Hutton M, Wszolek Z. Frontotemporal dementia and parkinsonism linked to chromosome 17 associated with tau gene mutations (FTDP-17t). In: Dickson D, editor. Neurodegeneration: the molecular pathology of dementia and movement disorders. Basel: ISN Neuropath Press; 2003. p. 86–102.
  • Pickering-Brown SM, Richardson AM, Snowden JS, et al. Inherited frontotemporal dementia in nine British families associated with intronic mutations in the tau gene. Brain. 2002;125:732–751.
  • Watts GD, Wymer J, Kovach MJ, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36:377–381.
  • Skibinski G, Parkinson NJ, Brown JM, et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005;37:806–808.
  • Benajiba L, Le Ber I, Camuzat A, et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol. 2009;65:470–473.
  • Yan J, Deng HX, Siddique N, et al. Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology. 2010;75:807–814.
  • Synofzik M, Maetzler W, Grehl T, et al. Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol Aging. 2012;33:2949e13–7.
  • Williams KL, Topp S, Yang S, et al. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat Commun. 2016;15:11253.
  • Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophiclateral sclerosis: summary and update. Hum Mutat. 2013;34:812–826.
  • Gao FB, Almeida S, Lopez-Gonzalez R. Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder. Embo J. 2017;36:2931–2950.
  • Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19:983–997.
  • Menzies FM, Fleming A, Caricasole A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 2017;93:1015–1034.
  • Guo Q, Lehmer C, Martínez-Sánchez A, et al. In situ structure of neuronal C9orf72 Poly-GA aggregates reveals proteasome recruitment. Cell. 2018;172:696–705.e12.
  • Janssens J. Van Broeckhoven C Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD-ALS spectrum disorders. Hum Mol Genet. 2013;22:R77–87.
  • Kortvelyessy P, Heinze HJ, Prudlo J, et al. CSF biomarkers of neurodegeneration in progressive non-fluent aphasia and other forms of frontotemporal dementia: clues for pathomechanisms? Front Neurol. 2018;9:504.
  • Zerr I, Schmitz M, Karch A, et al. Cerebrospinal fluid neurofilament light levels in neurodegenerative dementia: evaluation of diagnostic accuracy in the differential diagnosis of prion diseases. Alzheimers Dement. 2018;14:751–763.
  • Meeter LHH, Vijverberg EG, Del Campo M, et al. Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum. Neurology. 2018;90:e1231–e1239.
  • Hu WT, Watts K, Grossman M, et al. Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology. 2013;81:1945–1952.
  • Foiani MS, Woollacott IO, Heller C, et al. Plasma tau is increased in frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2018;89:804–807.
  • Tsai RM, Boxer AL. Therapy and clinical trials in frontotemporal dementia: past, present, and future. J Neurochem. 2016;138(Suppl 1):211–221.
  • Young JJ, Lavakumar M, Tampi D, et al. Frontotemporal dementia: latest evidence and clinical implications. Ther Adv Psychopharmacol. 2018;8:33–48.
  • Ihl R, Frölich L, Winblad B, et al. WFSBP task force on treatment guidelines for alzheimer‘s disease and other dementias world federation of societies of biological psychiatry (WFSBP) guidelines for the biological treatment of Alzheimer‘s disease and other dementias. World J Biol Psychiatry. 2011;12:2–32.
  • Huey ED, Putnam KT, Grafman J. A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology. 2006;66:17–22.
  • Li Y, Hai S, Zhou Y, et al. Cholinesterase inhibitors for rarer dementias associated with neurological conditions. Cochrane Database Syst Rev. 2015 Mar 3;(3):CD009444.
  • Buoli M, Serati M, Caldiroli A, et al. Pharmacological management of psychiatric symptoms in frontotemporal dementia: A systematic review. J Geriatr Psychiatry Neurol. 2017;30:162–169.
  • O’Brien JT, Holmes C, Jones M, et al. Clinical practice with anti-dementia drugs: A revised (third) consensus statement from the British Association for Psychopharmacology. J Psychopharmacol. 2017;31:147–166.
  • Tsai RM, Boxer AL. Treatment of frontotemporal dementia. Curr Treat Options Neurol. 2014;16:319.
  • Murley AG, Rowe JB. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain. 2018;141:1263–1285.
  • Hoyer D, Palacios JM, Mengod G. 5-HT receptor distribution in the human brain: autoradiographic studies. In: Marsden CA, Heal DJ, editors. Central Serotonin Receptors and Psychotropic Drugs. London: Blackwell Scientific Publications; 1992. p. 100–125.
  • Wood PL, Etienne P, Lal S, et al. A post-mortem comparison of the cortical cholinergic system in Alzheimer’s disease and Pick’s disease. J Neurol Sci. 1983;62:211–217.
  • Sparks DL, Markesbery WR. Altered serotoninergic and cholinergic synaptic markers Pick’s disease. Arch Neurol. 1991;48:796–799.
  • Francis PT, Holmes C, Webster MT, et al. Preliminary neurochemical findings in non-Alzheimer dementia due to lobar atrophy. Dementia. 1993;4:72–79.
  • Miller BL, Darby A, Swartz JR, et al. Dietary changes, compulsions and sexual behaviour in fronto-temporal degeneration. Dementia. 1995;6:195–199.
  • Miller BL, Ponton M, Benson DF, et al. Enhanced artistic creativity withtemporal lobe degeneration. Lancet. 1996;348:1744–1755.
  • Miller BL, Cummings JL, Boone K, et al. Emergence of artistic talent in frontotemporal dementia. Neurology. 1998;51:978–981.
  • Mendez MF, Shapira JS, McMurtray A, et al. Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatr. 2007;15:84–87.
  • Chow TW. Treatment approaches to symptoms associated with frontotemporal degeneration. Curr Psychiatry Rep. 2005;7:376–380.
  • Moretti R, Torre P, Antonello RM, et al. Rivastigmine in frontotemporal dementia: an open-label study. Drugs Aging. 2004;21:931–937.
  • Kertesz A, Morlog D, Light M, et al. Galantamine in frontotemporal dementia and primary progressive aphasia. Dement Geriatr Cogn Disord. 2008;25:178–185.
  • Litvan I, Phipps M, Pharr VL, et al. Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology. 2001;57:467–473.
  • Kishi T, Matsunaga S, Iwata N. Memantine for the treatment of frontotemporal dementia: a meta-analysis. Neuropsychiatr Dis Treat. 2015;11:2883–2885.
  • Vercelletto M, Boutoleau-Bretonnière C, Volteau C, et al. Memantine in behavioral variant frontotemporal dementia: negative results. J Alzheimer Dis. 2011;23:749–759.
  • Boxer AL, Knopman DS, Kaufer DI, et al. Memantine in patients with frontotemporal lobar degeneration: a multicenter, randomized, double-blind, placebo-controlled trial. Lancet Neurol. 2013;12:149–156.
  • Lozupone M, La Montagna M, D‘Urso F, et al. Pharmacotherapy for the treatment of depression in patients with Alzheimer’s disease: a treatment-resistant depressive disorder. Expert Opin Pharmacother. 2018;19:823–842.
  • Swartz JR, Miller BL, Lesser IM, et al. Frontotemporal dementia: treatment response to serotonin selective reuptake inhibitors. J Clin Psychiatry. 1997;58:212–216.
  • Chow TW, Mendez MF. Goals in symptomatic pharmacologic management of frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen. 2002;17:267–272.
  • Moretti R, Torre P, Antonello RM, et al. Frontotemporal dementia: paroxetine as a possible treatment of behavior symptoms. Eur Neurol. 2003;49:13–19.
  • Deakin JB, Rahman S, Nestor PJ, et al. Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology (Berl). 2004;172:400–408.
  • Herrmann N, Black SE, Chow T, et al. Serotonergic function and treatment of behavioral and psychological symptoms of frontotemporal dementia. Am J Geriatr Psychiatry. 2012;20:789–797.
  • Hughes LE, Rittman T, Regenthal R, et al. Improving response inhibition systems in frontotemporal dementia with citalopram. Brain. 2015;138:1961–1975.
  • Lebert F, Stekke W, Hasenbroeky C, et al. Frontotemporal dementia: a randomised, controlled trial with trazodone. Dement Geriatr Cogn Disord. 2004;17:355–359.
  • Mendez MF, Shapira JS, Miller BL. Stereotypical movements and frontotemporal dementia. Mov Disord. 2005;20:742–745.
  • Prodan CI, Monnon M, Ross ED. Behavioral abnormalities associated with rapid deterioration of language functions in semantic dementia respond to sertraline. J Neurol Neurosurg Psychiatry. 2009;80:1416–1417.
  • Anneser JM, Jox RJ, Borasio GD. Inappropriate sexual behavior in a case of ALS and FTD: successful treatment with sertraline. Amyotroph Lateral Scler. 2007;8:189–190.
  • Ikeda M, Shigenobu K, Fukuhara R, et al. Efficacy of fluvoxamine as a treatment for behavioral symptoms in frontotemporal lobar degeneration patients. Dement Geriatr Cogn Disord. 2004;17:117–121.
  • Anderson IM, Scott K, Harborne G. Serotonine and depression in frontal lobe dementia. Am J Psychiatry. 1995;152:645.
  • Panza F, Solfrizzi V, Seripa D, et al. Progresses in treating agitation: a major clinical challenge in Alzheimer‘s disease. Expert Opin Pharmacother. 2015;16:2581–2588.
  • Pijnenburg YA, Sampson EL, Harvey RJ, et al. Vulnerability to neuroleptic side effects in frontotemporal lobar degeneration. Int J Geriatr Psychiatr. 2003;18:67–72.
  • Curtis RC, Resch DS. Case of Pick´s central lobar atrophy with apparent stabilization of cognitive decline after treatment with risperidone. J Clin Psychopharmacol. 2000;20:384–385.
  • Fellgiebel A, Müller MJ, Hiemke C, et al. Clinical improvement in a case of frontotemporal dementia under aripiprazole treatment corresponds to partial recovery of disturbed frontal glucose metabolism. World J Biol Psychiatry. 2007;8:123–126.
  • Moretti R, Torre P, Antonello RM, et al. Olanzapine as a treatment of neuropsychiatric disorders of Alzheimer’s disease and other dementias: a 24-month follow-up of 68 patients. Am J Alzheimers Dis Other Demen. 2003;18:205–214.
  • Jha MK, Lambert ES, Beadles BA, et al. A case of frontotemporal dementia presenting with treatment-refractory psychosis and extreme violence: response to combination of clozapine, medroxyprogesterone, and sertraline. J Clin Psychopharmacol. 2015;35:732.
  • Riedl L, Mackenzie IR, Forstl H, et al. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatr Dis Treat. 2014;10:297–310.
  • Hodges JR, Davies RR, Xuereb JH, et al. Clinicopathotogical correlates in frontotemporal dementia. Ann Neurol. 2004;56:399–406.
  • Goldman LS, Genel M, Bezman RJ, et al. Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents, council on scientific affairs, American medical association. JAMA. 1998;279:1100–1107.
  • Mega MS, Cummings JL. Frontalsubcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 1994;6:358–370.
  • Huey ED, Garcia C, Wassermann EM, et al. Stimulant treatment of frontotemporal dementia in 8 patients. J Clin Psychiatry. 2008;69:1981–1982.
  • Rahman S, Robbins TW, Hodges JR, et al. Methylphenidate (‘Ritalin’) can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia. Neuropsychopharmacology. 2006;31:651–658.
  • Reed DA, Johnson NA, Thompson C, et al. A clinical trial of bromocriptine for treatment of primary progressive aphasia. Ann Neurol. 2004;56:750.
  • Alafuzoff I, Helishami S, Heinonen EH, et al. Selegiline treatment and extent of degenerative changes in brain tissue of patients with Alzheimer’s disease. Eur J Clin Pharmacol. 2000;55:815–819.
  • Adler G, Teufel M, Drach LM. Pharmacological treatment of frontotemporal dementia: treatment response to the MAO-A inhibitor moclobemide. Int J Geriatr Psychiatry. 2003;18:653–655.
  • Moretti R, Torre P, Antonello RM, et al. Effects of selegiline on fronto-temporal dementia: a neuropsychological evaluation. Int J Geriatr Psychiatry. 2002;17:391–392.
  • Jesso S, Morlog D, Ross S, et al. The effects of oxytocin on social cognition and behavior in frontotemporal dementia. Brain. 2011;134:2493–2501.
  • Finger EC, MacKinley J, Blair M, et al. Oxytocin for frontotemporal dementia: a randomized dose-finding study of safety and tolerability. Neurology. 2015;84:174–181.
  • Callegari I, Mattei C, Benassi F, et al. Agomelatine improves apathy in frontotemporal dementia. Neurodegener Dis. 2016;16:352–356.
  • D‘Alton S, Lewis J. Therapeutic and diagnostic challenges for frontotemporal dementia. Front Aging Neurosci. 2014;6:204.
  • De Conti L, Borroni B, Baralle M. New routes in frontotemporal dementia drug discovery. Expert Opin Drug Discov. 2017;12:659–671.
  • Drechsel DN, Hyman AA, Cobb MH, et al. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell. 1992;3:1141–1154.
  • Goedert M, Spillantini MG, Jakes R, et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3:519–526.
  • Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human tau gene. Biochemistry. 1992;3:10626–10633.
  • Kuret J, Chirita CN, Congdon EE, et al. Pathways of tau fibrillization. Biochim Biophys Acta. 2005;1739:167–178.
  • Holmes BB, Diamond MI. Prion-like properties of Tau protein: the importance of extracellular Tau as a therapeutic target. J Biol Chem. 2014;18:19855–19861.
  • Feany MB, Mattiace LA, Dickson DW. Neuropathologic overlap of progressive supranuclear palsy, Pick’s disease and corticobasal degeneration. J Neuropathol Exp Neurol. 1996;55:53–67.
  • Takahashi M, Weidenheim KM, Dickson DW, et al. Morphological and biochemical correlations of abnormal tau filaments in progressive supranuclear palsy. J Neuropathol Exp Neurol. 2002;61:33–45.
  • Zhukareva V, Mann D, Pickering-Brown S, et al. Sporadic Pick’s disease: a tauopathy characterized by a spectrum of pathological tau isoforms in gray and white matter. Ann Neurol. 2002;51:730–739.
  • Rohrer JD, Warren JD. Phenotypic signatures of genetic frontotemporal dementia. Curr Opin Neurol. 2011;24:542–549.
  • Panza F, Solfrizzi V, Seripa D, et al. Tau-Centric targets and drugs in clinical development for the treatment of Alzheimer‘s disease. Biomed Res Int. 2016;2016:3245935.
  • Papazacharias A, Lozupone M, Barulli MR, et al. Bipolar disorder and frontotemporal dementia: an intriguing association. J Alzheimers Dis. 2017;55(3):973–979.
  • Hong M, Chen DC, Klein PS, et al. Lithium reduces tau phosphorylationby inhibition of glycogen synthase kinase-3. J Biol Chem. 1997;272:25326–25332.
  • Noble W, Planel E, Zehr C, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA. 2005;102:6990–6995.
  • Engel T, Goni-Oliver P, Lucas JJ, et al. Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem. 2006;99:1445–1555.
  • Tolosa E, Litvan I, Höglinger GU, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 2014;29:470–478.
  • van Swieten JC, Heutink P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol. 2008;7:965–974.
  • Ghidoni R, Benussi L, Glionna M, et al. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology. 2008;14:1235–1239.
  • Boyd JD, Lee-Armandt JP, Feiler MS, et al. A high-content screen identifies novel compounds that inhibit stress-induced TDP-43 cellular aggregation and associated cytotoxicity. J Biomol Screen. 2014;19:44–56.
  • Jiang J, Cleveland DW. Bidirectional transcriptional inhibition as therapy for ALS/FTD caused by repeat expansion in C9orf72. Neuron. 2016;92:1160–1163.
  • Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12:435–442.
  • Donnelly CJ, Zhang PW, Pham JT, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80:415–428.
  • Sareen D, O’Rourke JG, Meera P, et al. Targeting RNA foci in iPSC derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. 2013;5:208ra149.
  • Lagier-Tourenne C, Baughn M, Rigo F, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci USA. 2013;19:E4530–E4539.
  • Neumann M, Rademakers R, Roeber S, et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain. 2009;132:2922–2931.
  • Fujii S, Takanashi K, Kitajo K, et al. Treatment with a global methyltransferase inhibitor induces the intranuclear aggregation of ALS-linked FUS mutant in vitro. Neurochem Res. 2016;41:826–835.
  • Wischik CM, P C E, Lai RY, et al. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci USA. 1996;93:11213–11218.
  • Seripa D, Solfrizzi V, Imbimbo BP, et al. Tau-directed approaches for the treatment of Alzheimer‘s disease: focus on leuco-methylthioninium. Expert Rev Neurother. 2016;16:259–277.
  • Gauthier S, Feldman HH, Schneider LS, et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer‘s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet. 2016;388:2873–2884.
  • TauRx Pharmaceuticals, Press Release, Sep 4. 10th International Conference on Frontotemporal Dementias; 2016; August 31-September 2, 2016; Munich.
  • Min SW, Chen X, Tracy TE, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med. 2015;21:1154–1162.
  • Lagraoui M, Sukumar G, Latoche JR, et al. Salsalate treatment following traumatic brain injury reduces inflammation and promotes a neuroprotective and neurogenic transcriptional response with concomitant functional recovery. Brain Behav Immun. 2017;61:96–109.
  • Paholikova K, Salingova B, Opattova A, et al. N-terminal truncation of microtubule associated protein tau dysregulates its cellular localization. J Alzheimers Dis. 2015;43:915–926.
  • Kontsekova E, Zilka N, Kovacech B, et al. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther. 2014;6:44.
  • Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer‘s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16:123–134.
  • Panza F, Logroscino G. Anti-tau vaccine in Alzheimer‘s disease: a tentative step. Lancet Neurol. 2017;16:99–100.
  • Novak P, Schmidt R, Kontsekova E, et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer‘s disease. Alzheimers Res Ther. 2018;10:108.
  • Panza F, Solfrizzi V, Seripa D, et al. Tau-based therapeutics for Alzheimer‘s disease: active and passive immunotherapy. Immunotherapy. 2016;8:1119–1134.
  • Bright J, Hussain S, Dang V, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging. 2015;36:693–709.
  • Braak H, Del Tredici K. Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol. 2011;121:589–595.
  • Dai CL, Chen X, Kazim SF, et al. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies. J Neural Transm (Vienna). 2015;122:607–617.
  • Jarskog LF, Dong Z, Kangarlu A, et al. Effects of davunetide on N-acetylaspartate and choline in dorsolateral prefrontal cortex in patients with schizophrenia. Neuropsychopharmacology. 2013;38:1245–1252.
  • Javitt DC, Buchanan RW, Keefe RS, et al. Effect of the neuroprotective peptide davunetide (AL-108) on cognition and functional capacity in schizophrenia. Schizophr Res. 2012;136:25–31.
  • Vulih-Shultzman I, Pinhasov A, Mandel S, et al. al.Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. J Pharmacol Exp Ther. 2007;323:438–449.
  • Matsuoka Y, Jouroukhin Y, Gray AJ, et al. A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J Pharmacol Exp Ther. 2008;325:146–153.
  • Jouroukhin Y, Ostritsky R, Assaf Y, et al. NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol Dis. 2013;56:79–94.
  • Morimoto BH, Schmechel D, Hirman J, et al. A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement Geriatr Cogn Disord. 2013;35:325–326.
  • Boxer AL, Lang AE, Grossman M, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 2014;13:676–685.
  • Cenik B, Sephton CF, Dewey CM, et al. Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription: rational therapeutic approach to frontotemporal dementia. J Biol Chem. 2011;286:16101–16108.
  • Patzke H, Albayya FP, Besterman JM, et al. Development of the novel histone deacetylase inhibitor EVP-0334 for CNS indications. 38th Annual Meeting for the Society of Neuroscience; 2008; Nov 19; Washington DC. Poster 831.21/I12.
  • Leventhal L, Tran A, Gallager I, et al. The histone deacetylase inhibitor EVP-0334 is pro-cognitive in mice. 38th Annual Meeting for the Society of Neuroscience; 2008; Nov 19; Washington DC. Poster 831.20/I11.
  • Patzke H, Albayya FP, Bollen E, et al. The novel histone deacetylase inhibitor EVP-0334 is pro-cognitive in rats. 39th Annual Meeting for the Society of Neuroscience; 2009; Oct 21; Chicago, IL. Poster 886.4/FF106.
  • De Muynck L, Van Damme P. The development of drug therapies for frontotemporal dementia caused by progranulin mutations. In: Atta-ur-Rahman, editor. Frontiers in clinical drug research - Alzheimer disorders. Vol. 3. Sharjah, United Arab Emirates: Bentham Science; 2015. p. 231–291.
  • Finch N, Baker M, Crook R, et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain. 2009;132:583–591.
  • Sha SJ, Miller ZA, Min SW, et al. An 8-week, open-label, dose-finding study of nimodipine for the treatment of progranulin insufficiency from GRN gene mutations. Alzheimers Dement. 2017;3:507–512.
  • Solfrizzi V, Agosti P, Lozupone M, et al. Nutritional intervention as a preventive approach for cognitive-related outcomes in cognitively healthy older adults: a systematic review. J Alzheimers Dis. 2018;64:S229–S254.
  • Pardini M, Serrati C, Guida S, et al. Souvenaid reduces behavioral deficits and improves social cognition skills in frontotemporal dementia: a proof-of-concept study. Neurodegener Dis. 2015;15:58–62.
  • Merrilees J. A model for management of behavioral symptoms in frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord. 2007;21:S64–S69.
  • Cheng ST, Chow PK, Song YQ, et al. Mental and physical activities delay cognitive decline in older persons with dementia. Am J Geriatr Psychiatry. 2014;22:63–67.
  • Kortte KB, Rogalski EJ. Behavioural interventions for enhancing life participation in behavioural variant frontotemporal dementia and primary progressive aphasia. Int Rev Psychiatry. 2013;25(2):237–245.
  • Tippett DC, Hillis AE, Tsapkini K. Treatment of primary progressive aphasia. Curr Treat Options Neurol. 2015;17:362.
  • Lu CH, Macdonald-Wallis C, Gray E, et al. Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology. 2015;84:2247–2257.
  • Scherling CS, Hall T, Berisha F, et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol. 2014;75:116–126.
  • Dani M, Brookes DJ, Edison P. Tau imaging in neurodegenerative diseases. Eur J Nucl Med Mol Imaging. 2015;16:1139–1150.
  • Boxer AL, Gold M, Huey E, et al. The advantages of frontotemporal degeneration drug development (part 2 of frontotemporal degeneration: the next therapeutic frontier). Alzheimers Dement. 2013;9:189–198.
  • Semler E, Anderl-Straub S, Uttner I, et al. A language-based sum score for the course and therapeutic intervention in primary progressive aphasia. Alzheimers Res Ther. 2018;10:41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.