610
Views
84
CrossRef citations to date
0
Altmetric
Review

The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections

Pages 2169-2184 | Received 14 Jun 2019, Accepted 23 Aug 2019, Published online: 09 Sep 2019

References

  • Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289:321–331.
  • Tooke CL, Hinchliffe P, Bragginton EC, et al. β-Lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol. 2019;431(18):3472–3500.
  • Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol. 2019;17:295–306.
  • Bonomo RA, Burd EM, Conly J, et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis. 2018;66:1290–1297.
  • van den Akker F, Bonomo RA. Exploring additional dimensions of complexity in inhibitor design for serine β-lactamases: mechanistic and intra- and inter-molecular chemistry approaches. Front Microbiol. 2018;9:622.
  • Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin Microbiol Rev. 2010;23:160–201.
  • Abodakpi H, Wanger A, Tam VH. What the clinical microbiologist should know about pharmacokinetics/pharmacodynamics in the era of emerging multidrug resistance: focusing on β-lactam/β-lactamase inhibitor combinations. Clin Lab Med. 2019;39:473–485.
  • Monogue ML, Nicolau DP. Pharmacokinetics-pharmacodynamics of β-lactamase inhibitors: are we missing the target? Expert Rev Anti Infect Ther. 2019;17:571–582.
  • Merck & Co., Inc. ZERBAXA® (ceftolozane and tazobactam) for injection, for intravenous use. Whitehouse Station: NJ 08889 USA; 2014.
  • Giacobbe DR, Bassetti M, De Rosa FG, et al. Ceftolozane/tazobactam: place in therapy. Expert Rev Anti Infect Ther. 2018;16:307–320.
  • Ceftolozane and tazobactam for the treatment of bacterial infections: a review of clinical effectiveness, cost-effectiveness, and guidelines. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2016.
  • Takeda S, Ishii Y, Hatano K, et al. Stability of FR264205 against ampC β-lactamase of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2007;30:443–445.
  • Drawz SM, Bethel CR, Doppalapudi VR, et al. Penicillin sulfone inhibitors of class D β-lactamases. Antimicrob Agents Chemother. 2010;54:1414–1424.
  • Papp-Wallace KM, Bethel CR, Distler AM, et al. Inhibitor resistance in the KPC-2 β-lactamase, a preeminent property of this class A β-lactamase. Antimicrob Agents Chemother. 2010;54:890–897.
  • Chen GJ, Pan SC, Foo J, et al. Comparing ceftolozane/tazobactam versus piperacillin/tazobactam as empiric therapy for complicated urinary tract infection in Taiwan: A cost-utility model focusing on gram-negative bacteria. J Microbiol Immunol Infect. 2019. DOI:10.1016/j.jmii.2019.04.003:S1684-182(18)30315-3.
  • Prabhu VS, Solomkin JS, Medic G, et al. Cost-effectiveness of ceftolozane/tazobactam plus metronidazole versus piperacillin/tazobactam as initial empiric therapy for the treatment of complicated intra-abdominal infections based on pathogen distributions drawn from national surveillance data in the United States. Antimicrob Resist Infect Control. 2017;6:107.
  • Del Barrio-Tofino E, Zamorano L, Cortes-Lara S, et al. Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. J Antimicrob Chemother. 2019;74:1825–1835.
  • Shortridge D, Duncan LR, Pfaller MA, et al. Activity of ceftolozane-tazobactam and comparators when tested against Gram-negative isolates collected from paediatric patients in the USA and Europe between 2012 and 2016 as part of a global surveillance programme. Int J Antimicrob Agents. 2019;53:637–643.
  • Carvalhaes CG, Castanheira M, Sader HS, et al. Antimicrobial activity of ceftolozane-tazobactam tested against Gram-negative contemporary (2015–2017) isolates from hospitalized patients with pneumonia in US medical centers. Diagn Microbiol Infect Dis. 2019;94:93–102.
  • Yin D, Wu S, Yang Y, et al. Results from the China Antimicrobial Surveillance Network (CHINET) in 2017 of the in vitro activities of ceftazidime-avibactam and ceftolozane-tazobactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63:e02431–18.
  • Jean SS, Lu MC, Shi ZY, et al. In vitro activity of ceftazidime-avibactam, ceftolozane-tazobactam, and other comparable agents against clinically important Gram-negative bacilli: results from the 2017 Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Infect Drug Resist. 2018;11:1983–1992.
  • Sader HS, Farrell DJ, Castanheira M, et al. Antimicrobial activity of ceftolozane/tazobactam tested against Pseudomonas aeruginosa and Enterobacteriaceae with various resistance patterns isolated in European hospitals (2011–12). J Antimicrob Chemother. 2014;69:2713–2722.
  • Farrell DJ, Sader HS, Flamm RK, et al. Ceftolozane/tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int J Antimicrob Agents. 2014;43:533–539.
  • Farrell DJ, Flamm RK, Sader HS, et al. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. Hospitals (2011–2012). Antimicrob Agents Chemother. 2013;57:6305–6310.
  • Walkty A, Karlowsky JA, Adam H, et al. In vitro activity of ceftolozane-tazobactam against Pseudomonas aeruginosa isolates obtained from patients in Canadian hospitals in the CANWARD study, 2007 to 2012. Antimicrob Agents Chemother. 2013;57:5707–5709.
  • Walkty A, Adam H, Baxter M, et al. In vitro activity of ceftolozane/tazobactam versus antimicrobial non-susceptible Pseudomonas aeruginosa clinical isolates including MDR and XDR isolates obtained from across Canada as part of the CANWARD study, 2008–16. J Antimicrob Chemother. 2018;73:703–708.
  • Sader HS, Farrell DJ, Flamm RK, et al. Ceftolozane/tazobactam activity tested against aerobic Gram-negative organisms isolated from intra-abdominal and urinary tract infections in European and United States hospitals (2012). J Infect. 2014;69:266–277.
  • Popejoy MW, Paterson DL, Cloutier D, et al. Efficacy of ceftolozane/tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: a pooled analysis of Phase 3 clinical trials. J Antimicrob Chemother. 2017;72:268–272.
  • Pazzini C, Ahmad-Nejad P, Ghebremedhin B. Ceftolozane/tazobactam susceptibility testing in extended-spectrum β-lactamase- and carbapenemase-producing Gram-negative bacteria of various clonal lineages. Eur J Microbiol Immunol (Bp). 2019;9:1–4.
  • Castanheira M, Duncan LR, Mendes RE, et al. Activity of ceftolozane-tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae isolates collected from respiratory tract specimens of hospitalized patients in the United States during 2013 to 2015. Antimicrob Agents Chemother. 2018;62:e02125–17.
  • Schmidt-Malan SM, Mishra AJ, Mushtaq A, et al. In vitro activity of imipenem-relebactam and ceftolozane-tazobactam against resistant Gram-negative bacilli. Antimicrob Agents Chemother. 2018;62:e00533–18.
  • Skoglund E, Abodakpi H, Rios R, et al. In vivo resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa arising by AmpC- and non-AmpC-mediated pathways. Case Rep Infect Dis. 2018;2018:9095203.
  • Fraile-Ribot PA, Cabot G, Mulet X, et al. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73:658–663.
  • Barnes MD, Taracila MA, Rutter JD, et al. Deciphering the evolution of cephalosporin resistance to ceftolozane-tazobactam in Pseudomonas aeruginosa. MBio. 2018;9:e02085–18.
  • MacVane SH, Pandey R, Steed LL, et al. Emergence of ceftolozane-tazobactam-resistant Pseudomonas aeruginosa during treatment is mediated by a single AmpC structural mutation. Antimicrob Agents Chemother. 2017;61:e01183–17.
  • Fraile-Ribot PA, Mulet X, Cabot G, et al. In vivo emergence of resistance to novel cephalosporin-β-lactamase inhibitor combinations through the duplication of amino acid D149 from OXA-2 β-lactamase (OXA-539) in sequence type 235 Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61:e01117–17.
  • Berrazeg M, Jeannot K, Ntsogo Enguene VY, et al. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob Agents Chemother. 2015;59:6248–6255.
  • Cabot G, Bruchmann S, Mulet X, et al. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58:3091–3099.
  • Allergan USA, Inc. AVYCAZ (ceftazidime and avibactam) for injection, for intravenous use. Madison: NJ 07940 USA; 2019 March.
  • Shirley M. Ceftazidime-avibactam: a review in the treatment of serious Gram-negative bacterial infections. Drugs. 2018;78:675–692.
  • Tuon FF, Rocha JL, Formigoni-Pinto MR. Pharmacological aspects and spectrum of action of ceftazidime-avibactam: a systematic review. Infection. 2018;46:165–181.
  • Endimiani A, Choudhary Y, Bonomo RA. In vitro activity of NXL104 in combination with β-lactams against Klebsiella pneumoniae isolates producing KPC carbapenemases. Antimicrob Agents Chemother. 2009;53:3599–3601.
  • Livermore DM, Mushtaq S, Warner M, et al. Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2011;55:390–394.
  • Kazmierczak KM, Bradford PA, Stone GG, et al. In vitro activity of ceftazidime-avibactam and aztreonam-avibactam against OXA-48-carrying Enterobacteriaceae isolated as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance program from 2012 to 2015. Antimicrob Agents Chemother. 2018;62:e00592–18.
  • Sader HS, Castanheira M, Shortridge D, et al. Antimicrobial activity of ceftazidime-avibactam tested against multidrug-resistant Enterobacteriaceae and Pseudomonas aeruginosa isolates from U.S. medical centers, 2013 to 2016. Antimicrob Agents Chemother. 2017;61:e01045–17.
  • van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis. 2016;63:234–241.
  • Stachyra T, Levasseur P, Pechereau MC, et al. In vitro activity of the β-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother. 2009;64:326–329.
  • Ehmann DE, Jahic H, Ross PL, et al. Kinetics of avibactam inhibition against class A, C, and D β-lactamases. J Biol Chem. 2013;288:27960–27971.
  • Barnes MD, Winkler ML, Taracila MA, et al. Klebsiella pneumoniae carbapenemase-2 (KPC-2), substitutions at Ambler position Asp179, and resistance to ceftazidime-avibactam: unique antibiotic-resistant phenotypes emerge from β-lactamase protein engineering. MBio. 2017;8:e00528–17.
  • Humphries RM, Yang S, Hemarajata P, et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;59:6605–6607.
  • Livermore DM, Warner M, Jamrozy D, et al. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob Agents Chemother. 2015;59:5324–5330.
  • Shields RK, Chen L, Cheng S, et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017;61:e02097–16.
  • Winkler ML, Papp-Wallace KM, Bonomo RA. Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV β-lactamases with single amino acid substitutions in the Ω-loop. J Antimicrob Chemother. 2015;70:2279–2286.
  • Melinta Therapeutics, Inc. VABOMERE® (meropenem and vaborbactam) for injection, for intravenous use. Lincolnshire: IL 60069 USA; 2019 February.
  • Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018;7:439–455.
  • Jorgensen SCJ, Rybak MJ. Meropenem and vaborbactam: stepping up the battle against carbapenem-resistant Enterobacteriaceae. Pharmacotherapy. 2018;38:444–461.
  • Wu G, Cheon E. Meropenem-vaborbactam for the treatment of complicated urinary tract infections including acute pyelonephritis. Expert Opin Pharmacother. 2018;19:1495–1502.
  • Albin OR, Patel TS, Kaye KS. Meropenem-vaborbactam for adults with complicated urinary tract and other invasive infections. Expert Rev Anti Infect Ther. 2018;16:865–876.
  • Cho JC, Zmarlicka MT, Shaeer KM, et al. Meropenem/vaborbactam, the first carbapenem/β-lactamase Inhibitor combination. Ann Pharmacother. 2018;52:769–779.
  • Langley GW, Cain R, Tyrrell JM, et al. Profiling interactions of vaborbactam with metallo-β-lactamases. Bioorg Med Chem Lett. 2019;29:1981–1984.
  • Castanheira M, Rhomberg PR, Flamm RK, et al. Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60:5454–5458.
  • Hackel MA, Lomovskaya O, Dudley MN, et al. In vitro Activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62:e01904–17.
  • Castanheira M, Huband MD, Mendes RE, et al. Meropenem-vaborbactam tested against contemporary Gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-producing, multidrug-resistant, and extensively drug-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61:e00567–17.
  • Pogue JM, Bonomo RA, Kaye KS. Ceftazidime/avibactam, meropenem/ vaborbactam,or both? clinical and formulary considerations. Clin Infect Dis. 2019;68:519–524.
  • Sabet M, Tarazi Z, Griffith DC. Activity of meropenem-vaborbactam against Pseudomonas aeruginosa and Acinetobacter baumannii in a neutropenic mouse thigh infection model. Antimicrob Agents Chemother. 2019;63:e01665–18.
  • Lomovskaya O, Sun D, Rubio-Aparicio D, et al. Vaborbactam: spectrum of β-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61:e01443–17.
  • Sun D, Rubio-Aparicio D, Nelson K, et al. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2017;61:e01694–17.
  • Wilson WR, Kline EG, Jones CE, et al. Effects of KPC variant and porin genotype on the in vitro activity of meropenem-vaborbactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2019;63:e02048–18.
  • Merck & Co., Inc. RECARBRIO™ (imipenem, cilastatin, and relebactam) for injection, for intravenous use. Whitehouse Station: NJ 08889 USA; 2019.
  • Karlowsky JA, Lob SH, Kazmierczak KM, et al. In vitro activity of imipenem-relebactam against clinical isolates of Gram-negative bacilli isolated in hospital laboratories in the United States as part of the SMART 2016 program. Antimicrob Agents Chemother. 2018;62:e00169–18.
  • Lob SH, Hackel MA, Kazmierczak KM, et al. In vitro activity of imipenem-relebactam against Gram-negative bacilli isolated from patients with lower respiratory tract infections in the United States in 2015 - Results from the SMART global surveillance program. Diagn Microbiol Infect Dis. 2017;88:171–176.
  • Lob SH, Hackel MA, Kazmierczak KM, et al. In vitro activity of imipenem-relebactam against Gram-negative ESKAPE pathogens isolated by clinical laboratories in the United States in 2015 (results from the SMART global surveillance program). Antimicrob Agents Chemother. 2017;61.
  • Papp-Wallace KM, Barnes MD, Alsop J, et al. Relebactam is a potent inhibitor of the KPC-2 β-lactamase and restores imipenem susceptibility in KPC-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62:e00174–18.
  • Barnes MD, Bethel CR, Alsop J, et al. Inactivation of the Pseudomonas-derived cephalosporinase-3 (PDC-3) by relebactam. Antimicrob Agents Chemother. 2018;62:e02406–17.
  • Powles MA, Galgoci A, Misura A, et al. In vivo efficacy of relebactam (MK-7655) in combination with imipenem-cilastatin in murine infection models. Antimicrob Agents Chemother. 2018;62:e02577–17.
  • Barnes MD, Rutter JD, Papp-Wallace KM, et al. O0284: Imipenem-relebactam efficiently inhibits D179 variants of the KPC-2 β-lactamase European Congress of clinical microbiology and infectious diseases. Amsterdam, Netherlands; 2019.
  • Haidar G, Clancy CJ, Chen L, et al. Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61:e00642–17.
  • Balabanian G, Rose M, Manning N, et al. Effect of porins and blaKPC expression on activity of imipenem with relebactam in Klebsiella pneumoniae: can antibiotic combinations overcome resistance? Microb Drug Resist. 2018;24:877–881.
  • Gomez-Simmonds A, Stump S, Giddins MJ, et al. Clonal background, resistance gene profile, and porin gene mutations modulate in vitro susceptibility to imipenem-relebactam in diverse Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62:e00573–18.
  • Lapuebla A, Abdallah M, Olafisoye O, et al. Activity of imipenem with relebactam against Gram-negative pathogens from New York City. Antimicrob Agents Chemother. 2015;59:5029–5031.
  • Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68:2286–2290.
  • Livermore DM. Interplay of impermeability and chromosomal β-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992;36:2046–2048.
  • Morinaka A, Tsutsumi Y, Yamada M, et al. OP0595, a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam ‘enhancer’. J Antimicrob Chemother. 2015;70:2779–2786.
  • Moya B, Barcelo IM, Bhagwat S, et al. WCK 5107 (zidebactam) and WCK 5153 are novel inhibitors of PBP2 showing potent “β-lactam enhancer” activity against Pseudomonas aeruginosa, including multidrug-resistant metallo-β-lactamase-producing high-risk clones. Antimicrob Agents Chemother. 2017;61:e02529–16.
  • Durand-Reville TF, Guler S, Comita-Prevoir J, et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat Microbiol. 2017;2:17104.
  • Dychter SS, Gold DA, Carson D, et al. Intravenous therapy: a review of complications and economic considerations of peripheral access. J Infus Nurs. 2012;35:84–91.
  • Hendrickson JR, North DS. Pharmacoeconomic benefit of antibiotic step-down therapy: converting patients from intravenous ceftriaxone to oral cefpodoxime proxetil. Ann Pharmacother. 1995;29:561–565.
  • Tamma PD, Conley AT, Cosgrove SE, et al. Association of 30-day mortality with oral step-down vs continued intravenous therapy in patients hospitalized with Enterobacteriaceae bacteremia. JAMA Intern Med. 2019;179:316–323.
  • Veve MP, Wagner JL, Kenney RM, et al. Comparison of fosfomycin to ertapenem for outpatient or step-down therapy of extended-spectrum β-lactamase urinary tract infections. Int J Antimicrob Agents. 2016;48:56–60.
  • Beique L, Zvonar R. Addressing concerns about changing the route of antimicrobial administration from intravenous to oral in adult inpatients. Can J Hosp Pharm. 2015;68:318–326.
  • Shrayteh ZM, Rahal MK, Malaeb DN. Practice of switch from intravenous to oral antibiotics. Springerplus. 2014;3:717.
  • Brack E, Bodmer N, Simon A, et al. First-day step-down to oral outpatient treatment versus continued standard treatment in children with cancer and low-risk fever in neutropenia. A randomized controlled trial within the multicenter SPOG 2003 FN study. Pediatr Blood Cancer. 2012;59:423–430.
  • Mertz D, Koller M, Haller P, et al. Outcomes of early switching from intravenous to oral antibiotics on medical wards. J Antimicrob Chemother. 2009;64:188–199.
  • Daver NG, Shelburne SA, Atmar RL, et al. Oral step-down therapy is comparable to intravenous therapy for Staphylococcus aureus osteomyelitis. J Infect. 2007;54:539–544.
  • Wang X, Zhang F, Zhao C, et al. In vitro activities of ceftazidime-avibactam and aztreonam-avibactam against 372 Gram-negative bacilli collected in 2011 and 2012 from 11 teaching hospitals in China. Antimicrob Agents Chemother. 2014;58:1774–1778.
  • Biedenbach DJ, Kazmierczak K, Bouchillon SK, et al. In vitro activity of aztreonam-avibactam against a global collection of Gram-negative pathogens from 2012 and 2013. Antimicrob Agents Chemother. 2015;59:4239–4248.
  • Kazmierczak KM, Rabine S, Hackel M, et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60:1067–1078.
  • Crandon JL, Nicolau DP. Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging Gram-negative organisms, including metallo-β-lactamase producers. Antimicrob Agents Chemother. 2013;57:3299–3306.
  • Alm RA, Johnstone MR, Lahiri SD. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother. 2015;70:1420–1428.
  • Crandon JL, Nicolau DP. In vitro activity of cefepime/AAI101 and comparators against cefepime non-susceptible Enterobacteriaceae. Pathogens. 2015;4:620–625.
  • Morrissey I, Magnet S, Hawser S, et al. In vitro activity of cefepime-enmetazobactam against Gram-negative isolates collected from United States and European hospitals during 2014–2015. Antimicrob Agents Chemother. 2019;e00514–19. DOI:10.1128/AAC.00514-19.
  • Papp-Wallace KM, Bethel CR, Caillon J, et al. Beyond piperacillin-tazobactam: cefepime and AAI101 as a potent β-lactam-β-lactamase inhibitor combination. Antimicrob Agents Chemother. 2019;63:e00105–19.
  • Crandon JL, Nicolau DP. In vivo activities of simulated human doses of cefepime and cefepime-AAI101 against multidrug-resistant Gram-negative Enterobacteriaceae. Antimicrob Agents Chemother. 2015;59:2688–2694.
  • Barnes MD, Kumar V, Bethel CR, et al. Targeting multidrug-resistant Acinetobacter spp.: sulbactam and the diazabicyclooctenone β-lactamase inhibitor ETX2514 as a novel therapeutic agent. MBio. 2019;10:e00159–19.
  • Haidar G, Philips NJ, Shields RK, et al. Ceftolozane-tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: clinical effectiveness and evolution of resistance. Clin Infect Dis. 2017;65:110–120.
  • McLeod SM, Shapiro AB, Moussa SH, et al. Frequency and mechanism of spontaneous resistance to sulbactam combined with the novel β-lactamase inhibitor ETX2514 in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2018;62:e01576–17.
  • Sader HS, Castanheira M, Mendes RE, et al. Antimicrobial activity of high-proportion cefepime-tazobactam (WCK 4282) against a large number of Gram-negative isolates collected worldwide in 2014. Antimicrob Agents Chemother. 2017;61:e02409–16.
  • Castanheira M, Duncan LR, Rhomberg PR, et al. Enhanced activity of cefepime-tazobactam (WCK 4282) against KPC-producing Enterobacteriaceae when tested in media supplemented with human serum or sodium chloride. Diagn Microbiol Infect Dis. 2017;89:305–309.
  • Livermore DM, Mushtaq S, Warner M, et al. Potential of high-dose cefepime/tazobactam against multiresistant Gram-negative pathogens. J Antimicrob Chemother. 2018;73:126–133.
  • Mushtaq S, Vickers A, Woodford N, et al. P1536: Potentiation of cefepime by the boronate VNRX-5133 versus Gram-negative bacteria with known β-lactamases. European Congress of Clinical Microbiology and Infectious Diseases; 2018; Madrid, Spain.
  • Kazmierczak K, Hackel M, Sahm D. P1544: In vitro activity of cefepime in combination VNRX-5133 when tested against cephalosporin and carbapenem resistant β-lactamase producing Gram-negative isolates. European Congress of Clinical Microbiology and Infectious Diseases; 2018; Madrid, Spain.
  • Estabrook M, Hackel M, Sahm D. P1542: In vitro activity of cefepime in combination with VNRX-5133 against meropenem and/or cefepime resistant clinical isolates of Pseudomonas aeruginosa. European Congress of Clinical Microbiology and Infectious Diseases; 2018; Madrid Spain.
  • Daigle D, Burns C, Pevear D. O0606: Kinetic mechanism and parameters of inhibition of serine KPC-2, CTX-M-15, P99 AmpC and metallo VIM-2 by the broad-spectrum β-lactamase inhibitor VNRX-5133. European Congress of Clinical Microbiology and Infectious Diseases; 2018; Madrid, Spain.
  • Daigle D, Hamrick J, Chatwin C, et al. 1370: Cefepime/VNRX-5133 broad-spectrum activity is maintained against emerging KPC- and PDC-variants in multidrug resistant K. pneumoniae and P. aeruginosa. ID Week. San Francisco, California; 2018.
  • Weiss W, Pulse M, Nguyen P, et al. O0600: Efficacy of cefepime/VNRX-5133, a novel β-lactamase inhibitor, against cephalosporin-resistant, ESBL-producing K. pneumoniae in a murine lung-infection model. European Congress of Clinical Microbiology and Infectious Diseases; 2018; Madrid, Spain.
  • Weiss W, Pulse M, Nguyen P, et al. P1538: Efficacy of cefepime/VNRX-5133, a novel broad-spectrum β-lactamase inhibitor, in a murine bacteraemia infection model with carbapenem-resistant Enterobacteriaceae (CREs). European Congress of Clinical Microbiology and Infectious Diseases; 2018; Madrid, Spain.
  • Georgiou PC, Siopi M, Tsala M, et al. P1540: VNRX-5133, a novel broad-spectrum β-lactamase inhibitor, enhances the activity of cefepime against resistant Enterobacteriaceae and P. aeruginosa isolates in a neutropenic mouse-thigh infection model. European Congress of Clinical Microbiology and Infectious Diseases; 2018; Madrid, Spain.
  • Tyrrell JM, Wali M, Daigle D, et al. P1541: Susceptibility to cefepime/VNRX-5133 in 298 carbapenem-resistant Enterobacteriaceae producing serine and metallo-β-lactamases. European Congress of Clinical Microbiology and Infectious Diseases; 2018; Madrid, Spain.
  • Sader HS, Castanheira M, Huband M, et al. WCK 5222 (cefepime-zidebactam) antimicrobial activity against clinical isolates of Gram-negative bacteria collected worldwide in 2015. Antimicrob Agents Chemother. 2017;61:e00072–17.
  • Livermore DM, Mushtaq S, Warner M, et al. In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. J Antimicrob Chemother. 2017;72:1373–1385.
  • Thomson KS, AbdelGhani S, Snyder JW, et al. Activity of cefepime-zidebactam against multidrug-resistant (MDR) Gram-negative pathogens. Antibiotics (Basel). 2019;8:E32.
  • Sader HS, Rhomberg PR, Flamm RK, et al. WCK 5222 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms producing clinically relevant β-lactamases. J Antimicrob Chemother. 2017;72:1696–1703.
  • Papp-Wallace KM, Nguyen NQ, Jacobs MR, et al. Strategic approaches to overcome resistance against Gram-negative pathogens using β-lactamase inhibitors and β-lactam enhancers: activity of three novel diazabicyclooctanes WCK 5153, zidebactam (WCK 5107), and WCK 4234. J Med Chem. 2018;61:4067–4086.
  • Moya B, Barcelo IM, Bhagwat S, et al. Potent β-lactam enhancer activity of zidebactam and WCK 5153 against Acinetobacter baumannii, including carbapenemase-producing clinical isolates. Antimicrob Agents Chemother. 2017;61:e01238–17.
  • Moya B, Barcelo IM, Cabot G, et al. In vitro and in vivo activities of β-lactams in combination with the novel β-lactam enhancers zidebactam and WCK 5153 against multidrug-resistant metallo-β-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2019;63:e00128–19.
  • Avery LM, Abdelraouf K, Nicolau DP. Assessment of the in vivo efficacy of WCK 5222 (cefepime-zidebactam) against carbapenem-resistant Acinetobacter baumannii in the neutropenic murine lung infection model. Antimicrob Agents Chemother. 2018;62:e00948–18.
  • Almarzoky Abuhussain SS, Avery LM, Abdelraouf K, et al. In vivo efficacy of humanized WCK 5222 (cefepime-zidebactam) exposures against carbapenem-resistant Acinetobacter baumannii in the neutropenic thigh model. Antimicrob Agents Chemother. 2019;63:e01931–18.
  • Bhagwat SS, Periasamy H, Takalkar SS, et al. The novel β-lactam enhancer zidebactam augments the in vivo pharmacodynamic activity of cefepime in a neutropenic mouse lung Acinetobacter baumannii infection model. Antimicrob Agents Chemother. 2019;63:e02146–18.
  • Monogue ML, Tabor-Rennie J, Abdelraouf K, et al. In vivo efficacy of WCK 5222 (cefepime-zidebactam) against multidrug-resistant Pseudomonas aeruginosa in the neutropenic murine thigh infection model. Antimicrob Agents Chemother. 2019;63:e00233–19.
  • Bhagwat S, Kute A, Matuschek E, et al. P2770: Selection of EUCAST disk potency for WCK 5222 (cefepime-zidebactam, FEP-ZID) susceptibility testing against Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii European Congress of Clinical Microbiology and Infectious Diseases; 2019; Amsterdam, Netherlands.
  • Kline E, Jones C, Mettus R, et al. P1168: In vitro activity of meropenem-nacubactam against carbapenem-resistant and ceftazidime-avibactam-resistant Enterobacteriaceae. European Congress of Clinical Microbiology and Infectious Diseases; 2019; Amsterdam, Netherlands.
  • Morrissey I, Magnet S, Hawser S, et al. In vitro activity of nacubactam, a novel dual action diazabicyclooctane, alone and with meropenem, against β-lactamase-positive Enterobacteriaceae. European Congress of Clinical Microbiology and Infectious Diseases; 2018; Madrid, Spain.
  • Okujava R, Garcia F, Haldimann A, et al. Activity of meropenem/nacubactam combination against Gram-negative clinical isolates: ROSCO global surveillance 2017. ID Week; 2018; San Francisco, California.
  • Barnes MD, Taracila MA, Good CE, et al. Nacubactam enhances meropenem activity against carbapenem-resistant Klebsiella pneumoniae producing Klebsiella pneumoniae carbapenemases (KPC). Antimicrob Agents Chemother. 2019;e00432–19. DOI:10.1128/AAC.00432-19.
  • Mushtaq S, Vickers A, Woodford N, et al. Activity of nacubactam (RG6080/OP0595) combinations against MBL-producing Enterobacteriaceae. J Antimicrob Chemother. 2019;74:953–960.
  • Barnes MD, Good CE, Bajaksouzian S et al.: 698: Nacubactam inhibits class A β-lactamases. ID Week; 2018; San Francisco, California.
  • Asempa TE, Motos A, Abdelraouf K, et al. Efficacy of human-simulated epithelial lining fluid exposure of meropenem-nacubactam combination against class A serine β-lactamase-producing Enterobacteriaceae in the neutropenic murine lung infection model. Antimicrob Agents Chemother. 2019;63:e02383–18.
  • Monogue ML, Giovagnoli S, Bissantz C, et al. In vivo efficacy of meropenem with a novel non-β-lactam-β-lactamase inhibitor, nacubactam, against Gram-negative organisms exhibiting various resistance mechanisms in a murine complicated urinary tract infection model. Antimicrob Agents Chemother. 2018;62:e02596–17.
  • Doumith M, Mushtaq S, Livermore DM, et al. New insights into the regulatory pathways associated with the activation of the stringent response in bacterial resistance to the PBP2-targeted antibiotics, mecillinam and OP0595/RG6080. J Antimicrob Chemother. 2016;71:2810–2814.
  • McLeod S, Carter N, Moussa S, et al. SUNDAY-AAR-714: The novel β-lactamase inhibitor ETX1317 restores the activity of cefpodoxime against drug-resistant Enterobacteriaceae ASM Microbe. San Francisco, CA; 2019.
  • McLeod S, Moussa S, Huband M, et al. P1184: The novel β-lactamase inhibitor ETX1317 effectively restores the activity of cefpodoxime against recent global Enterobacteriaceae isolates from urinary tract infections. ECCMID; 2019; Amsterdam, Netherlands.
  • O’Donnell J, Chen A, Tanudra A, et al. Saturday-AAR287: Cefpodoxime proxetil/ETX0282: A novel oral β-lactam/lactam/β-lactamase inhibitor combination to treat the emerging threat of lactamase inhibitor combination to treat the emerging threat of multi-drug resistant Enterobacteriaceae. ASM Microbe; 2017; New Orleans, Louisiana.
  • Shapiro A, Moussa S, Carter N, et al. SUNDAY-AAR-715: Cefpodoxime-ETX1317 susceptibility is unaffected by ceftazidime-avibactam resistance mutations V240G, D179Y and D179Y/T243M in KPC-3 β-lactamase ASM Microbe. San Francisco, CA; 2019.
  • Weiss W, Carter K, Pulse M, et al. P1991: Efficacy of cefpodoxime proxetil and ETX0282 in a murine UTI model with Escherichia coli and Klebsiella pneumoniae. European Congress of Clinical Microbiology and Infectious Diseases; 2019; Amsterdam, Netherlands.
  • Mushtaq S, Vickers A, Woodford N, et al. WCK 4234, a novel diazabicyclooctane potentiating carbapenems against Enterobacteriaceae, Pseudomonas and Acinetobacter with class A, C and D β-lactamases. J Antimicrob Chemother. 2017;72:1688–1695.
  • Sader HS, Streit JM, Arends SJR, et al. SUNDAY-AAR-718 - Antimicrobial activity of ceftibuten-clavulanate when tested against clinical Enterobacteriaceae isolates collected worldwide in 2017 ASM Microbe. San Francisco, CA; 2019.
  • Sader HS, Deshpande LM, Doyle TB, et al. SATURDAY-AAR-780: Ceftibuten-clavulanate activity against extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae ASM Microbe. San Francisco, CA; 2019.
  • Grupper M, Stainton SM, Nicolau DP, et al. In vitro pharmacodynamics of a novel ceftibuten-clavulanate combination antibiotic against Enterobacteriaceae. Antimicrob Agents Chemother. 2019;e00144–19. DOI:10.1128/AAC.00144-19
  • Abdelraouf K, Stainton SM, Nicolau DP. In vivo pharmacodynamic profile of ceftibuten/clavulanate combination against extended spectrum β-lactamase-producing Enterobacteriaceae in the murine thigh infection model. Antimicrob Agents Chemother. 2019;e00145–19. DOI:10.1128/AAC.00145-19
  • Burns CJ, Trout R, Zulli A, et al. MEDI 259: Discovery of VNRX-7145: A broad-spectrum orally bioavailable β-lactamase inhibitor (BLI) for highly resistant bacterial infections (“superbugs”). Florida: American Chemical Society National Meeting Orlando; 2019.
  • Hamrick JC, Chatwin CL, John KJ, et al. SUNDAY-AAR-720: The orally bioavailable β-lactamase inhibitor VNRX-7145 restores bactericidal activity of ceftibuten against Enterobacteriaceae expressing Ambler class A, C, and/or D enzymes ASM Microbe. San Francisco, CA; 2019.
  • John KJ, Chatwin CL, Hamrick JC, et al. SUNDAY-AAR-719: Rescue of ceftibuten activity by the oral β-lactamase inhibitor VNRX-7145 against Enterobacteriaceae expressing class A, C and/or D β-lactamases ASM Microbe. San Francisco, CA; 2019.
  • Hackel M, Sahm D. SUNDAY-AAR-721: In vitro activity of ceftibuten in combination with VNRX-7145 and comparators against 1,066 UTI isolates non-susceptible to amoxicillin-clavulanate and levofloxacin ASM Microbe. San Francisco, CA; 2019.
  • Mendes RE, Rhomberg PR, Watters AA, et al. P1180: In vitro activity of the orally available ceftibuten/VNRX-7145 combination against a challenge set of Enterobacteriaceae pathogens carrying molecularly characterised β-lactamase genes. European Congress of Clinical Microbiology and Infectious Diseases; 2019; Amsterdam, Netherlands.
  • Myers CL, Daigle D, Burns CR, et al. P1182: Ceftibuten/VNRX-7145, an orally bioavailable β-lactam/β-lactamase inhibitor combination active against serine-β-lactamase producing Enterobacteriaceae. European Congress of Clinical Microbiology and Infectious Diseases; 2019; Amsterdam, Netherlands.
  • Pulse ME, Weiss WJ, Nguyen P, et al. SUNDAY-AAR-726: Efficacy of ceftibuten + VNRX-7145 a novel β-lactamase inhibitor against ESBL E. coli strains in a murine UTI model ASM Microbe. San Francisco, CA; 2019.
  • Avery LM, Abdelraouf K, Nicolau DP. SUNDAY-AAR-727:Assessmentof the in vivo pharmacodynamic profile of ceftibuten (CTB)/VNRX-7145 combination against serine β-lactamase-producing Enterobacteriaceae (SBL-EB) in the neutropenic murine thigh infection model ASM Microbe. San Francisco, CA; 2019.
  • Lee J, Cho YL, Shin S, et al. P1187: Penicillin-binding protein activity of β-lactamase inhibitor GT-055. European Congress of Clinical Microbiology and Infectious Diseases; 2019; Amsterdam, Netherlands.
  • Sader HS, Duncan LR, Thompson J, et al. SUNDAY-AAR-571: Antimicrobial activity of the novel siderophore cephalosporin GT-1 tested alone and combined with the β-lactamase inhibitor GT-055 against molecularly characterized Enterobacteriaceae clinical isolates. ASM Microbe; 2018; Atlanta, Georgia.
  • Hackel M, Biek D, Cho YL, et al. SUNDAY-AAR-575: In vitro activity of GT-1 and GT-1/GT-055 against recent Gram-negative clinical isolates. ASM Microbe; 2018; Atlanta, Georgia.
  • Oh S, Lee J, Han H, et al. Sunday-AAR574: Activity of novel siderophore cephalosporin GT-1 and β-lactamase inhibitor GT-055 against resistant K. pneumoniae in time-kill and murine thigh infection studies. ASM Microbe; 2018; Atlanta, Georgia.
  • Ambrose PG, VanScoy BD, Trang M, et al. Pharmacokinetics-pharmacodynamics of CB-618 in combination with cefepime, ceftazidime, ceftolozane, or meropenem: the pharmacological basis for a stand-alone β-lactamase inhibitor. Antimicrob Agents Chemother. 2017;61:e00630–17.
  • VanScoy BD, Trang M, McCauley J, et al. Pharmacokinetics-pharmacodynamics of a novel β-lactamase inhibitor, CB-618, in combination with meropenem in an in vitro infection model. Antimicrob Agents Chemother. 2016;60:3891–3896.
  • Reddy RK, Glinka T, Totrov M, et al. US 10,206,937 B2: Boronic acid derivatives and therapeutic uses thereof. In: Patent US, editor. United States; 2019;1-130.
  • Lomovskaya O, Hecker SJ, Reddy KR, et al. SUNDAY-AAR-706, AAR-707, AAR-708, AAR-709, AAR-710, AAR-711, AAR-712, AAR-713. ASM Microbe; 2019; San Francisco, California.
  • Gordon EM, Duncton MAJ, Gallop MA. Orally absorbed derivatives of the β-lactamase inhibitor avibactam. design of novel prodrugs of sulfate containing drugs. J Med Chem. 2018;61:10340–10344.
  • Gordon E, Duncton M, Trias J. SUNDAY-AAR-716: Oral prodrugs of avibactam. ASM Microbe; 2019; San Francisco, California.
  • Gordon E, Duncton M, Lal R, et al. P1159: Oral prodrugs of avibactam, medicinal chemistry, and synthesis of ARX-1796. European Congress of Clinical Microbiology and Infectious Diseases; 2019; Amsterdam, Netherlands.
  • Trias J, Sable C, Hackel M, et al. P1151: Potentiation of oral cephalosporins and carbapenems by the addition of avibactam. European Congress of Clinical Microbiology and Infectious Diseases; 2019; Amsterdam, Netherlands.
  • Duncan LR, Rhomberg PR, Mendes RE, et al. SUNDAY-AAR-717: Ceftibuten-avibactam activity against β-lactam-resistant Enterobacteriaceae clinical isolates. ASM Microbe; San Francisco, California.
  • Reck F, Bermingham A, Blais J, et al. IID572: A new potentially best-in-class β-lactamase inhibitor. ACS Infect Dis. 2019;5:1045–1051.
  • Christensen C, Grossman JH, Hwang J. The innovator’s prescriptions: a disruptive solution for healthcare. New York: McGraw Hill; 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.