851
Views
16
CrossRef citations to date
0
Altmetric
Review

Current pharmacotherapeutic options for myasthenia gravis

, &
Pages 2295-2303 | Received 19 Aug 2019, Accepted 16 Oct 2019, Published online: 31 Oct 2019

References

  • Espinoza IO, Reynoso C, Chávez G, et al. Congenital myasthenic syndrome due to rapsyn deficiency: a case report with a new mutation and compound heterozygosity. Medwave. 2019;19:e7645.
  • Finsterer J. Congenital myasthenic syndromes. Orphanet J Rare Dis. 2019;14:57.
  • Gilhus NE, Tzartos S, Evoli A, et al. Myasthenia gravis. Nat Rev Dis Primers. 2019;5(1):1–19.
  • Lee M, Beeson D, Palace J. Therapeutic strategies for congenital myasthenic syndromes. Ann N Y Acad Sci. 2018;1412:129–136.
  • Farmakidis C, Pasnoor M, Barohn RJ, et al. Congenital myasthenic syndromes: a clinical and treatment approach. Curr Treat Options Neurol. 2018;20:36.
  • Engel AG, Shen X-M, Selcen D, et al. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 2015;14:420–434.
  • Burke G, Cossins J, Maxwell S, et al. Rapsyn mutations in hereditary myasthenia: distinct early- and late-onset phenotypes. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology; 2003;61:826–828.
  • Barohn RJ, McIntire D, Herbelin L, et al. Reliability testing of the quantitative myasthenia gravis score. Ann N Y Acad Sci. 1998;841:769–772.
  • Lashley D, Palace J, Jayawant S, et al. Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology. 2010;74:1517–1523.
  • Lipka AF, Vrinten C, van Zwet EW, et al. Ephedrine treatment for autoimmune myasthenia gravis. Neuromuscul Disord. 2017;27:259–265.
  • Harper CM, Fukodome T, Engel AG. Treatment of slow-channel congenital myasthenic syndrome with fluoxetine. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology; 2003;60: 1710–1713.
  • Harper CM, Engel AG. Safety and efficacy of quinidine sulfate in slow-channel congenital myasthenic syndrome. Ann N Y Acad Sci. 1998;841:203–206.
  • Visser AC, Laughlin RS, Litchy WJ, et al. Rapsyn congenital myasthenic syndrome worsened by fluoxetine. Muscle Nerve. 2017;55:131–135.
  • Bonanno S, Pasanisi MB, Frangiamore R, et al. Amifampridine phosphate in the treatment of muscle-specific kinase myasthenia gravis: a phase IIb, randomized, double-blind, placebo-controlled, double crossover study. SAGE Open Med. 3rd ed. 2018;6:2050312118819013.
  • Burns TM, Smith GA, Allen JA, et al. Editorial by concerned physicians: unintended effect of the orphan drug act on the potential cost of 3,4-diaminopyridine. Muscle Nerve. 2016;53:165–168.
  • Gilhus NE, Hong Y. Maternal myasthenia gravis represents a risk for the child through autoantibody transfer, immunosuppressive therapy and genetic influence. Eur J Neurol. 2018;25:1402–1409.
  • Barnett C, Katzberg HD, Keshavjee S, et al. Thymectomy for non-thymomatous myasthenia gravis: a propensity score matched study. Orphanet J Rare Dis. 2014;9:214.
  • Wolfe GI, Kaminski HJ, Aban IB, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. 2016;375:511–522.
  • Zinman L, Ng E, Bril V. IV immunoglobulin in patients with myasthenia gravis: a randomized controlled trial. Neurology. 2007;68:837–841.
  • Barth D, Nabavi Nouri M, Ng E, et al. Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology. 2011;76:2017–2023.
  • Ephrem A, Chamat S, Miquel C, et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood. 2008;111:715–722.
  • Tha-In T, Bayry J, Metselaar HJ, et al. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 2008;29:608–615.
  • Lünemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology–mode of action and clinical efficacy. Nat Rev Neurol. 2015;11:80–89.
  • Burakgazi AZ. Immunoglobulin treatment in neuromuscular medicine. J Clin Neuromuscul Dis. 2019;20:182–193.
  • Basta M. Modulation of complement-mediated immune damage by intravenous immune globulin. Clin Exp Immunol. 1996;104(Suppl 1):21–25.
  • Basta M, Van Goor F, Luccioli S, et al. F(ab)’2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med. 2003;9:431–438.
  • Karelis G, Balasa R, De Bleecker JL, et al. A phase 3 multicenter, prospective, open-label efficacy and safety study of immune globulin (human) 10% caprylate/chromatography purified (IGIV-C) in patients with myasthenia gravis exacerbations. Eur Neurol. 2019. Oct 25:1-8. doi: 10.1159/000502818. [Epub ahead of print]
  • Jensen P, Bril V. A comparison of the effectiveness of intravenous immunoglobulin and plasma exchange as preoperative therapy of myasthenia gravis. J Clin Neuromuscul Dis. 2008;9:352–355.
  • Bourque PR, Pringle CE, Cameron W, et al. Subcutaneous immunoglobulin therapy in the chronic management of myasthenia gravis: a retrospective cohort study. Saruhan-Direskeneli G, editor. PLoS ONE. 2016;11 e0159993.
  • Beecher G, Anderson D, Siddiqi ZA. Subcutaneous immunoglobulin in myasthenia gravis exacerbation: a prospective, open-label trial. Neurology. 2017;89:1135–1141.
  • Garnero M, Fabbri S, Gemelli C, et al. Subcutaneous immunoglobulins are a valuable treatment option in myasthenia gravis. J Clin Neurol. 2018;14:98–99.
  • Mann JD, Johns TR, Campa JF. Long-term administration of corticosteroids in myasthenia gravis. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology; 1976;26: 729–740.
  • Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med. 2005;353:1711–1723.
  • Wiseman AC. Immunosuppressive Medications. Clin J Am Soc Nephrol. American Society of Nephrology; 2016;11: 332–343.
  • Benatar M, McDermott MP, Sanders DB, et al. Efficacy of prednisone for the treatment of ocular myasthenia (EPITOME): a randomized, controlled trial. Muscle Nerve. 2016;53:363–369.
  • Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111:1133–1145.
  • Palace J, Newsom-Davis J, Lecky B. A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia Gravis Study Group.Neurology. 1998;50: 1778–1783.
  • Hart IK, Sharshar T, Sathasivam S. Immunosuppressant drugs for myasthenia gravis. J Neurol Neurosurg Psychiatry. 2009;80: 5–6. discussion 6.
  • Bromberg MB, Wald JJ, Forshew DA, et al. Randomized trial of azathioprine or prednisone for initial immunosuppressive treatment of myasthenia gravis. J Neurol Sci. 1997;150:59–62.
  • Myasthenia Gravis Clinical Study Group. A randomised clinical trial comparing prednisone and azathioprine in myasthenia gravis. Results of the second interim analysis. J Neurol Neurosurg Psychiatr. 1993;56:1157–1163.
  • Bryant A, Atkins H, Pringle CE, et al. Myasthenia gravis treated with autologous hematopoietic stem cell transplantation. JAMA Neurol. 2016;73:652–658.
  • Drachman DB, Jones RJ, Brodsky RA. Treatment of refractory myasthenia: “rebooting” with high-dose cyclophosphamide. Ann Neurol. 2003;53:29–34.
  • Tindall RS, Phillips JT, Rollins JA, et al. A clinical therapeutic trial of cyclosporine in myasthenia gravis. Ann N Y Acad Sci. 1993;681:539–551.
  • Tindall RS, Rollins JA, Phillips JT, et al. Preliminary results of a double-blind, randomized, placebo-controlled trial of cyclosporine in myasthenia gravis. N Engl J Med. Massachusetts Medical Society; 1987;316: 719–724.
  • Konishi T, Yoshiyama Y, Takamori M, et al. Clinical study of FK506 in patients with myasthenia gravis. Muscle Nerve. 2003;28:570–574.
  • Kanai T, Uzawa A, Kawaguchi N, et al. Adequate tacrolimus concentration for myasthenia gravis treatment. Eur J Neurol. 2017;24:270–275.
  • Yagi Y, Sanjo N, Yokota T, et al. Tacrolimus monotherapy: a promising option for ocular myasthenia gravis. Eur Neurol. 2013;69:344–345.
  • Zhang Z, Yang C, Zhang L, et al. Efficacy and safety of tacrolimus in myasthenia gravis: a systematic review and meta-analysis. Ann Indian Acad Neurol. Medknow Publications; 2017;20: 341–347.
  • Zhao L-N, Liang Y, Fang X-J, et al. Efficacy and safety of tacrolimus in osserman grade III and osserman grade IV myasthenia gravis. Clin Neurol Neurosurg. 2018;173:70–76.
  • Wang L, Xi J, Zhang S, et al. Effectiveness and safety of tacrolimus therapy for myasthenia gravis: a single arm meta-analysis. J Clin Neurosci. 2019;63:160–167.
  • Tao X, Wang W, Jing F, et al. Long-term efficacy and side effects of low-dose tacrolimus for the treatment of myasthenia gravis. Neurol Sci. 2017;38:325–330, Springer Milan
  • Sanders DB, Wolfe GI, Benatar M, et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology. 2016;87:419–425.
  • Cruz JL, Wolff ML, Vanderman AJ, et al. The emerging role of tacrolimus in myasthenia gravis. Ther Adv Neurol Disord. SAGE Publications Sage UK: London, England; 2015;8: 92–103.
  • Hartono C, Muthukumar T, Suthanthiran M. Immunosuppressive drug therapy. Cold Spring Harb Perspect Med. 2013;3:a015487.
  • Sanders DB, Hart IK, Mantegazza R, et al. An international, phase III, randomized trial of mycophenolate mofetil in myasthenia gravis. Neurology. 2008;71:400–406.
  • Sanders DB, Siddiqi ZA. Lessons from two trials of mycophenolate mofetil in myasthenia gravis. Ann N Y Acad Sci. ed. 2008. 2008;1132: 249–253.
  • Meriggioli MN, Ciafaloni E, Al-Hayk KA, et al. Mycophenolate mofetil for myasthenia gravis: an analysis of efficacy, safety, and tolerability. Neurology. 2003;61:1438–1440.
  • Brown PM, Pratt AG, Isaacs JD. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat Rev Rheumatol. Nature Publishing Group; 2016;12: 731–742.
  • Pasnoor M, He J, Herbelin L, et al. A randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology. 2016;87:57–64.
  • Heckmann JM, Rawoot A, Bateman K, et al. A single-blinded trial of methotrexate versus azathioprine as steroid-sparing agents in generalized myasthenia gravis. BMC Neurol. BioMed Central; 2011;11: 97.
  • Heckmann JM, Bateman K. Letter re: a randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology. 2017;88:417.
  • Jing S, Lu J, Song J, et al. Effect of low-dose rituximab treatment on T- and B-cell lymphocyte imbalance in refractory myasthenia gravis. J Neuroimmunol. 2019;332:216–223.
  • Hehir MK, Hobson-Webb LD, Benatar M, et al. Rituximab as treatment for anti-MuSK myasthenia gravis: multicenter blinded prospective review. Neurology. 2017;89:1069–1077.
  • Collongues N, Casez O, Lacour A, et al. Rituximab in refractory and non-refractory myasthenia: a retrospective multicenter study. Muscle Nerve. 2012;46:687–691.
  • Jing S, Song Y, Song J, et al. Responsiveness to low-dose rituximab in refractory generalized myasthenia gravis. J Neuroimmunol. 2017;311:14–21.
  • Gilhus NE. Myasthenia Gravis. N Engl J Med. 2016;375:2570–2581.
  • Memon AB, Javed A, Caon C, et al. Long-term safety of rituximab induced peripheral B-cell depletion in autoimmune neurological diseases. Weber MS, editor. PLoS ONE. Public Library of Science; 2018;13:e0190425.
  • Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999;189:1747–1756.
  • Hewett K, Sanders DB, Grove RA, et al. Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology. 2018;90:e1425–34.
  • Jaretzki A, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task force of the medical scientific advisory board of the myasthenia gravis foundation of America. Ann Thorac Surg. 2000;70:327–334.
  • Wijnsma KL, Heine Ter R, Moes DJAR, et al. Pharmacology, pharmacokinetics and pharmacodynamics of eculizumab, and possibilities for an individualized approach to eculizumab. Clin Pharmacokinet. 2019;58:859–874.
  • Howard JF, Utsugisawa K, Benatar M, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017;16:976–986.
  • Muppidi S, Wolfe GI, Conaway M, et al., MG-QOL15 Study Group. MG-ADL: still a relevant outcome measure. Muscle Nerve. 2011;44:727–731.
  • Muppidi S, Utsugisawa K, Benatar M, et al. Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve. 2019;60:14–24.
  • Beecher G, Putko BN, Wagner AN, et al. Therapies directed against B-cells and downstream effectors in generalized autoimmune myasthenia gravis: current status. Drugs. 2019;79:353–364.
  • Ra Pharmaceuticals announces positive top-line data from phase 2 trial of zilucoplan in patients with generalized myasthenia gravis. Dec 10, 2018. Available from: https://www.biospace.com/article/releases/ra-pharmaceuticals-announces-positive-top-line-data-from-phase-2-trial-of-zilucoplan-in-patients-with-generalized-myasthenia-gravis/
  • Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715–725.
  • Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. Higher Education Press; 2018;9: 15–32.
  • Bril V, Benatar M, Andersen H, et al. Proof-of-concept for an anti-FcRn antibody in patients with moderate-to-severe generalized myasthenia gravis: clinical effects and safety of rozanolixizumab from a phase 2 multicentre, randomised controlled trial. Submitted for publication.
  • Collins J, Jones L, Snyder M, et al. RVT-1401, A novel anti-FcRn monoclonal antibody, is well tolerated in healthy subjects and reduces plasma IgG following subcutaneous or intravenous administration (P5.2–079). Neurology. 2019;92:P5.2–079.
  • Howard JF Jr, Bril V, Burns TM, et al. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology. 2019;92:e2661–73.
  • Burns TM, Sadjadi R, Utsugisawa K, et al. International clinimetric evaluation of the MG-QOL15, resulting in slight revision and subsequent validation of the MG-QOL15r. Muscle Nerve. 2016;54:1015–1022.
  • Buzzard KA, Meyer NJ, Hardy TA, et al. Induction intravenous cyclophosphamide followed by maintenance oral immunosuppression in refractory myasthenia gravis. Muscle Nerve. 2015;52:204–210.
  • Bucknall RC. Myasthenia associated with D-penicillamine therapy in rheumatoid arthritis. Proc R Soc Med. Royal Society of Medicine Press; 1977;70(Suppl 3): 114–117.
  • Cooper DS, Meriggioli MN, Bonomi PD, et al. Severe exacerbation of myasthenia gravis associated with checkpoint inhibitor immunotherapy. J Neuromuscul Dis. IOS Press; 2017;4:169–173.
  • Psimaras D. Neuromuscular complications of immune checkpoint inhibitors. Presse Med. 2018;47:e253–9.
  • Kolb NA, Trevino CR, Waheed W, et al. Neuromuscular complications of immune checkpoint inhibitor therapy. Muscle Nerve. 2018;58:10–22.
  • Alabdali M, Bril V, Morgan E, et al. An unprecedented case of myasthenia gravis induced by binimetinib. Clinical Case Reports. In press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.