731
Views
6
CrossRef citations to date
0
Altmetric
Review

Bacterial meningitis: new treatment options to reduce the risk of brain damage

& ORCID Icon
Pages 97-105 | Received 29 Jul 2019, Accepted 23 Oct 2019, Published online: 01 Nov 2019

References

  • van de Beek D, Cabellos C, Dzupova O, et al. ESCMID guideline: diagnosis and treatment of acute bacterial meningitis. Clin Microbiol Infect. 2016;22(Suppl 3):S37–62.
  • Ciofi Degli Atti M, Esposito S, Parola L, et al. GSAQ working group. In-hospital management of children with bacterial meningitis in Italy. Ital J Pediatr. 2014;40:87.
  • Oordt-Speets AM, Bolijn R, van Hoorn RC, et al. Global etiology of bacterial meningitis: a systematic review and meta-analysis. PLoS One. 2018;13:e0198772.
  • Azzari C, Moriondo M, Di Pietro P, et al. The burden of bacteremia and invasive diseases in children aged less than five years with fever in Italy. Ital J Pediatr. 2015;41:92.
  • Esposito S, Castellazzi L, Bosco A, et al. Use of a multicomponent, recombinant, meningococcal serogroup B vaccine (4CMenB) for bacterial meningitis prevention. Immunotherapy. 2014;6:395–408.
  • Martinelli D, Azzari C, Bonanni P, et al. Impact of Haemophilus influenzae type b conjugate vaccination on hospitalization for invasive disease in children fifteen years after its introduction in Italy. Vaccine. 2017;35:6297–6301.
  • GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18:459–480.
  • Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39:1267–1284.
  • van Ettekoven CN, van de Beek D, Brouwer MC. Update on community-acquired bacterial meningitis: guidance and challenges. Clin Microbiol Infect. 2017;23:601–606.
  • Worls Health Organization (WHO). Meningococcal meningitis. Fact sheet. 2017 cited 2019 Jun 30 Available from: http://www.who.int/mediacentre/facsheets/fs141/en/
  • Barichello T, Fagundes GD, Generoso JS, et al. Pathophysiology of neonatal acute bacterial meningitis. J Med Microbiol. 2013;62:1781–1789.
  • Gerber J, Nau R. Mechanisms of injury in bacterial meningitis. Curr Opin Neurol. 2010;23:312–318.
  • Grandgirard D, Leib SL. Strategies to prevent neuronal damage in paediatric bacterial meningitis. Curr Opin Pediatr. 2006;18:112–118.
  • Deghmane AE, Alonso JM, Taha MK. Emerging drugs for acute bacterial meningitis. Expert Opin Emerg Drugs. 2009;14:381–393.
  • Tan YC, Gill AK, Kim KS. Treatment strategies for central nervous system infections: an update. Expert Opin Pharmacother. 2015;16:187–203.
  • Liechti FD, Grandgirard D, Leib SL. Bacterial meningitis: insights into pathogenesis and evaluation of new treatment options: a perspective from experimental studies. Future Microbiol. 2015;10:1195–1213.
  • Brouwer MC, McIntyre P, Prasad K, et al. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev. 2015;9:CD004405.
  • Barnes PJ, Adcock I. Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci. 1993;14:436–441.
  • Trombetta AC, Meroni M, Cutolo M. Steroids and autoimmunity. Front Horm Res. 2017;48:121–132.
  • Leib SL, Heimgartner C, Bifrare YD, et al. Dexamethasone aggravates hippocampal apoptosis and learning deficiency in pneumococcal meningitis in infant rats. Pediatr Res. 2003;54:353–357.
  • Irazuzta J, Pretzlaff RK, DeCourten-Myers G, et al. Dexamethasone decreases neurological sequelae and caspase activity. Intensive Care Med. 2005;31:146–150.
  • Gross HP, Verner JV Jr, Weller JM. Pneumococcal meningitis treated with hydrocortisone, ACTH, and antibiotics. Med Bull (Ann Arbor). 1956;22:329–331.
  • Ribble JC, Braude AI. ACTH and adrenal steroids in the treatment of pneumococcal meningitisin adults. Am J Med. 1958;24:68–79.
  • Esposito S, Semino M, Picciolli I, et al. Should corticosteroids be used in bacterial meningitis in children? Eur J Paediatr Neurol. 2013;17:24–28.
  • Esposito S, Principi N, Calabresi P, et al. An evolving redefinition of autoimmune encephalitis. Autoimmun Rev. 2019;18:155–163.
  • Quagliarello VJ, Scheld WM. Treatment of bacterial meningitis. N Engl J Med. 1997;336:708–716.
  • McIntyre PB, Berkey CS, King SM, et al. Dexamethasone as adjunctive therapy in bacterial meningitis: a meta analysis of randomized clinical trials since 1988. JAMA. 1997;278:925–931.
  • de Gans J, van de Beek D. Dexamethasone in adults with bacterial meningitis. N Engl J Med. 2002;347:1549–1556.
  • Posadas E, Fisher J. Pediatric bacterial meningitis: an update on early identification and management. Pediatr Emerg Med Pract. 2018;15:1–20.
  • Charlier C, Perrodeau É, Leclercq A, et al. Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect Dis. 2017;17:510–519.
  • Wehrli W, Staehelin M. Actions of the rifamycins. Bacteriol Rev. 1971;35:290–309.
  • Principi N, Caironi M, Venturini F, et al. Daptomycin in paediatrics: current knowledge and the need for future research. J Antimicrob Chemother. 2015;70:643–648.
  • Heidary M, Khosravi AD, Khoshnood S, et al. Daptomycin. J Antimicrob Chemother. 2018;73:1–11.
  • Mook-Kanamori B, Rouse M, Kang CI, et al. Daptomycin in experimental murine pneumococcal meningitis. BMC Infect Dis. 2009;9:500.
  • Gerber P, Stucki A, Acosta F, et al. Daptomycin is more efficacious than vancomycin against a methicillin-susceptible Staphylococcus aureus in experimental meningitis. J Antimicrob Chemother. 2006;57:720–723.
  • Cottagnoud P, Pfister M, Acosta F, et al. Daptomycin is highly efficacious against penicillin-resistant and penicillin- and quinolone-resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother. 2004;48:3928–3933.
  • Vivas M, Force E, Garrigos C, et al. Experimental study of the efficacy of daptomycin for the treatment of cephalosporin-resistant pneumococcal meningitis. J Antimicrob Chemother. 2014;69:3020–3026.
  • Vivas M, Force E, Tubau F, et al. Effect of dexamethasone on the efficacy of daptomycin in the therapy of experimental pneumococcal meningitis. Int J Antimicrob Agents. 2015;46:28–32.
  • Viladrich PF, Gudiol F, Linares J, et al. Evaluation ofvancomycin for therapy of adult pneumococcal meningitis. Antimicrob Agents Chemother. 1991;35:2467–2472.
  • Ricard JD, Wolff M, Lacherade JC, et al. Levels of vancomycin in cerebrospinal fluid of adult patients receiving adjunctive corticosteroids to treat pneumococcal meningitis: a prospective multicenterobservational study. Clin Infect Dis. 2007;44:250–255.
  • Stucki A, Cottagnoud M, Winkelmann V, et al. Daptomycin produces an enhanced bactericidal activity compared to ceftriaxone, measured by [3H] choline release in the cerebrospinal fluid, in experimental meningitis due to a penicillin-resistant pneumococcal strain without lysing its cell wall. Antimicrob Agents Chemother. 2007;51:2249–2252.
  • Grandgirard D, Schürch C, Cottagnoud P, et al. Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob Agents Chemother. 2007;51:2173–2178.
  • Grandgirard D, Oberson K, Bühlmann A, et al. Attenuation of cerebrospinal fluid inflammation by the nonbacteriolytic antibiotic daptomycin versus that by ceftriaxone in experimental pneumococcal meningitis. Antimicrob Agents Chemother. 2010;54:1323–1326.
  • Grandgirard D, Burri M, Agyeman P, et al. Adjunctive daptomycin attenuates brain damage and hearing loss more efficiently than rifampin in infant rat pneumococcal meningitis. Antimicrob Agents Chemother. 2012;56:4289–4295.
  • Muri L, Grandgirard D, Buri M, et al. Combined effect of non-bacteriolytic antibiotic and inhibition of matrix metalloproteinases prevents brain injury and preserves learning, memory and hearing function in experimental paediatric pneumococcal meningitis. J Neuroinflamm. 2018;15:233.
  • Klein M, Höhne C, Angele B, et al. Adjuvant non-bacteriolytic and anti-inflammatory combination therapy in pneumococcal meningitis: an investigation in a mouse model. Clin Microbiol Infect. 2019;25:108.e9–108.e15.
  • Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15:602–611.
  • Brinkmann V. Neutrophil extracellular traps in the second decade. J Innate Immun. 2018;10:414–421.
  • Brandt CT, Lundgren JD, Lund SP, et al. Attenuation of the bacterial load in blood by pretreatment with granulocyte-colony-stimulating factor protects rats from fatal outcome and brain damage during Streptococcus pneumoniae meningitis. Infect Immun. 2004;72:4647–4653.
  • Brandt CT, Lundgren JD, Frimodt-Møller N, et al. Blocking of leukocyte accumulation in the cerebrospinal fluid augments bacteremia and increases lethality in experimental pneumococcal meningitis. J Neuroimmunol. 2005;166:126–131.
  • Rossi AG, Sawatzky DA, Walker A, et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med. 2006;12:1056–1064.
  • Koedel U, Frankenberg T, Kirschnek S, et al. Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog. 2009;5:e1000461.
  • de Buhr N, Reuner F, Neumann A, et al. Neutrophil extracellular trap formation in the Streptococcus suis-infected cerebrospinal fluid compartment. Cell Microbiol. 2017;19. DOI:10.1111/cmi.12649.
  • Erni ST, Fernandes G, Buri M, et al. Anti-inflammatory and oto-protective effect of the small heat shock protein alpha B-crystallin (HspB5) in experimental pneumococcal meningitis. Front Neurol. 2019;10:570.
  • Mohanty T, Fisher J, Bakochi A, et al. Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun. 2019;10:1667.
  • Levin AB, Duff TA, Javid MJ. Treatment of increased intracranial pressure: a comparison of different hyperosmotic agents and the use of thiopental. Neurosurgery. 1979;5:570–575.
  • Menger JS, Charney JZ, Rivera VM, et al. Treatment with glycerol of cerebral oedema due to acute cerebral infarction. Lancet. 1971;2:993–997.
  • Gilsanz V, Rebollar JL, Buencuerpo J, et al. Controlled trial of glycerol versus dexamethasone in the treatment of cerebral oedema in acute cerebral infarction. Lancet. 1975;1:1049–1051.
  • McCurdy DK, Schneider B, Scheie HG. Oral glycerol: the mechanism of intraocular hypotension. Am J Ophthalmol. 1966;61:1244–1249.
  • Singhi S, Järvinen A, Peltola H. Increase in serum osmolality is possible mechanism for the beneficial effects of glycerol in childhood bacterial meningitis. Pediatr Infect Dis J. 2008;27:892–896.
  • Kilpi T, Peltola H, Jauhiainen T, et al. Oral glycerol and intravenous dexamethasone in preventing neurologic and audiologic sequelae of childhood bacterial meningitis. The finnish study group. Pediatr Infect Dis J. 1995;14:270–278.
  • Peltola H, Roine I, Fernández J, et al. Adjuvant glycerol and/or dexamethasone to improve the outcomes of childhood bacterial meningitis: a prospective, randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2007;45:1277–1286.
  • Sáez-Llorens X, McCracken GH Jr. Glycerol and bacterial meningitis. Clin Infect Dis. 2007;45:1287–1289.
  • Blaser C, Klein M, Grandgirard D, et al. Adjuvant glycerol is not beneficial in experimental pneumococcal meningitis. BMC Infect Dis. 2010;10:84.
  • Ajdukiewicz KM, Cartwright KE, Scarborough M, et al. Glycerol adjuvant therapy in adults with bacterial meningitis in a high HIV seroprevalence setting in Malawi: a double-blind, randomised controlled trial. Lancet Infect Dis. 2011;11:293–300.
  • Sankar J, Singhi P, Bansal A, et al. Role of dexamethasone and oral glycerol in reducing hearing and neurological sequelae in children with bacterial meningitis. Indian Pediatr. 2007;44:649‐656.
  • Molyneux EM, Kawaza K, Phiri A, et al. Glycerol and acetaminophen as adjuvant therapy did not affect the outcome of bacterial meningitis in Malawian children. Pediatr Infect Dis J. 2014;33:214–216.
  • Roine I, Peltola H, Fernández J, et al. Influence of admission findings on death and neurological outcome from childhood bacterial meningitis. Clin Infect Dis. 2008;46:1248–1252.
  • Rottenberg DA, Hurwitz BJ, Posner JB. The effect of oral glycerol on intraventricular pressure in man. Neurology. 1977;27:600–608.
  • Vaziri S, Mansouri F, Sayad B, et al. Meta-analysis of studies comparing adjuvant dexamethasone to glycerol to improve clinical outcome of bacterial meningitis. J Res Med Sci. 2016;21:22.
  • Wall EC, Ajdukiewicz KM, Bergman H, et al. Osmotic therapies added to antibiotics for acute bacterial meningitis. Cochrane Database Syst Rev. 2018;2:CD008806.
  • Muri L, Leppert D, Grandgirard D, et al. MMPs and ADAMs in neurological infectious diseases and multiple sclerosis. Cell Mol Life Sci. 2019;76:3097–3116.
  • Rosenberg GA, Estrada EY, Mobashery S. Effect of synthetic matrix metalloproteinase inhibitors on lipopolysaccharide-induced blood-brain barrier opening in rodents: differences in response based on strains and solvents. Brain Res. 2007;1133:186–192.
  • Leib SL, Clements JM, Lindberg RLP, et al. Inhibition of matrix metalloproteinases and tumour necrosis factor α converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain. 2001;124:1734–1742.
  • Leib SL, Leppert D, Clements J, et al. Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun. 2000;68:615–620.
  • Meli D, Loeffler J, Baumann P, et al. In pneumococcal meningitis a novel water-soluble inhibitor of matrix metalloproteinases and TNF-α converting enzyme attenuates seizures and injury of the cerebral cortex. J Neuroimmunol. 2004;151:6–11.
  • Majeed S, Radotra BD, Sharma S. Adjunctive role of MMP-9 inhibition along with conventional anti-tubercular drugs against experimental tuberculous meningitis. Int J Exp Pathol. 2016;97:230–237.
  • Liechti FD, Grandgirard D, Leppert D, et al. Matrix metalloproteinase inhibition lowers mortality and brain injury in experimental pneumococcal meningitis. Infect Immun. 2014;82:1710–1718.
  • Liechti FD, Bächtold F, Grandgirard D, et al. The matrix metalloproteinase inhibitor RS-130830 attenuates brain injury in experimental pneumococcal meningitis. J Neuroinflamm. 2015;12:43.
  • Ricci S, Grandgirard D, Wenzel M, et al. Inhibition of matrix metalloproteinases attenuates brain damage in experimental meningococcal meningitis. BMC Infect Dis. 2014;14:726.
  • Paul R, Lorenzl S, Koedel U, et al. Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann Neurol. 1998;44:592–600.
  • Meli DN, Coimbra RS, Erhart DG, et al. Doxycycline reduces mortality and injury to the brain and cochlea in experimental pneumococcal meningitis. Infect Immun. 2006;74:3890–3896.
  • Shapiro S, Miller A, Lahat N, et al. Expression of matrix metalloproteinases, sICAM-1 and IL-8 in CSF from children with meningitis. J Neurol Sci. 2003;206:43–48.
  • Yushchenko M, Weber F, Mäder M, et al. Matrix metalloproteinase-9 (MMP-9) in human cerebrospinal fluid (CSF): elevated levels are primarily related to CSF cell count. J Neuroimmunol. 2000;110:244–251.
  • Green JA, Thi Hong Chau T, Farrar JJ, et al. CNS infection, CSF matrix metalloproteinase concentrations, and clinical/laboratory features. Neurology. 2011;76:577–579.
  • Tsai H-C, Shi M-H, Lee SS-J, et al. Expression of matrix metalloproteinases and their tissue inhibitors in the serum and cerebrospinal fluid of patients with meningitis. Clin Microbiol Infect. 2011;17:780–784.
  • Thwaites GE, Nguyen DB, Nguyen HD, et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med. 2004;351:1741–1751.
  • Green JA, Tran CT, Farrar JJ, et al. Dexamethasone, cerebrospinal fluid matrix metalloproteinase concentrations and clinical outcomes in tuberculous meningitis. PLoS One. 2009;4:e7277.
  • Gerber J, Böttcher T, Hahn M, et al. Increased mortality and spatial memory deficits in TNF-α-deficient mice in ceftriaxone-treated experimental pneumococcal meningitis. Neurobiol Dis. 2004;16:133–138.
  • Kuikka A, Valtonen VV. Factors associated with improved outcome of Pseudomonas aeruginosa bacteremia in a Finnish university hospital. Eur J Clin Microbiol Infect Dis. 1998;17:701–708.
  • Botting R, Ayoub SS. COX-3 and the mechanism of action of paracetamol/acetaminophen. Prostaglandins Leukot Essent Fatty Acids. 2005;72:85–87.
  • Pelkonen T, Roine I, Cruzeiro ML, et al. Slow initial β-lactam infusion and oral paracetamol to treat childhood bacterial meningitis: a randomised, controlled trial. Lancet Infect Dis. 2011;11:613–621.
  • Gianinazzi C, Grandgirard D, Imboden H, et al. Caspase-3 mediates hippocampal apoptosis in pneumococcal meningitis. Acta Neuropathol. 2003;105:499–507.
  • Bifrare YD, Kummer J, Joss P, et al. Brain-derived neurotrophic factor protects against multiple forms of brain injury in bacterial meningitis. J Infect Dis. 2005;191:40–45.
  • Mourvillier B, Tubach F, van de Beek D, et al. Induced hypothermia in severe bacterial meningitis: a randomized clinical trial. JAMA. 2013;310:2174–2183.
  • Pirracchio R, Journois D. Hypothermia for bacterial meningitis. JAMA. 2014;311:1357.
  • Koelman DLH, Brouwer MC, van de Beek D. Targeting the complement system in bacterial meningitis. Brain. 2019 Aug 2:pii: awz222. DOI:10.1093/brain/awz222. Epub ahead of print.
  • Rugemalira E, Roine I, Kuligowski J, et al. Protein oxidation biomarkers and myeloperoxidase activation in cerebrospinal fluid in childhood bacterial meningitis. Antioxidants (Basel). 2019;8:pii: E441.
  • Barichello T, Generoso JS, Simões LR, et al. Role of oxidative stress in the pathophysiology of pneumococcal meningitis. Oxid Med Cell Longev. 2013;2013:371465.
  • Sheu JN, Liao WC, Wu UI, et al. Resveratrol suppresses calcium-mediated microglial activation and rescues hippocampal neurons of adult rats following acute bacterial meningitis. Comp Immunol Microbiol Infect Dis. 2013;36:137–148.
  • de Queiroz KB, Dos Santos Fontes Pereira T, Araújo MSS, et al. Resveratrol acts anti-inflammatory and neuroprotective in an infant rat model of pneumococcal meningitis by modulating the hippocampal miRNome. Mol Neurobiol. 2018;55:8869–8884.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.