309
Views
0
CrossRef citations to date
0
Altmetric
Review

Current and promising pharmacotherapeutic options for candidiasis

, , &
Pages 887-888 | Received 18 Aug 2020, Accepted 06 Jan 2021, Published online: 04 Feb 2021

References

  • Jampilek J. How can we bolster the antifungal drug discovery pipeline? Future Med Chem. 2016 8;Aug(12):1393–1397.
  • Brown GD, Denning DW, Levitz SM. Tackling Human Fungal Infections. Science. 2012;336(6082):647..
  • Kullberg BJ, Arendrup MC. Invasive Candidiasis. N Engl J Med. 2015 Oct;373(15):1445–1456.
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013 Feb 15;4(2):119–128.
  • Sardi JC, Scorzoni L, Bernardi T, et al. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013 Jan;62(Pt 1):10–24.
  • Chandra J, Mukherjee PK. Candida biofilms: development, architecture, and resistance. Microbiol Spectr. 2015 Aug;3:4.
  • Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 2016 May;18(5):310–321.
  • Inigo M, Del Pozo JL. Fungal biofilms: from bench to bedside. Rev Esp Quimioter. 2018 Sep;31(Suppl 1):35–38.
  • Noverr MC, Fidel PL Jr. Questions remain regarding the presence of fungal species biofilm in women with vulvovaginal candidiasis. Am J Obstet Gynecol. 2019 Aug;221(2):169.
  • Swidsinski A, Guschin A, Tang Q, et al. Vulvovaginal candidiasis: histologic lesions are primarily polymicrobial and invasive and do not contain biofilms. Am J Obstet Gynecol. 2019 Jan;220(1):91e1–91 e8.
  • Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, et al. Characterization of mucosal Candida albicans biofilms. PLoS One. 2009 Nov 24;4(11):e7967.
  • Harriott MM, Lilly EA, Rodriguez TE, et al. Candida albicans forms biofilms on the vaginal mucosa. Microbiology (Reading). 2010 Dec;156(Pt 12):3635–3644.
  • Arendrup MC, Sulim S, Holm A, et al. Diagnostic issues, clinical characteristics, and outcomes for patients with fungemia. J Clin Microbiol. 2011 Sep;49(9):3300–3308.
  • Lortholary O, Renaudat C, Sitbon K, et al. Worrisome trends in incidence and mortality of candidemia in intensive care units (Paris area, 2002-2010). Intensive Care Med. 2014 Sep;40(9):1303–1312.
  • Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009 Mar 1;48(5):503–535.
  • Koehler P, Stecher M, Cornely OA, et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clinical Microbiology and Infection. 2019 Oct;25(10):1200–1212.
  • Giacobbe DR, Maraolo AE, Simeon V, et al. Changes in the relative prevalence of candidaemia due to non-albicans Candida species in adult in-patients: A systematic review, meta-analysis and meta-regression. Mycoses. 2020 Apr;63(4):334–342.
  • Chowdhary A, Sharma C, Meis JF. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017 May;13(5):e1006290.
  • Denning DW, Bromley MJ. Infectious Disease.How to bolster the antifungal pipeline. Science. 2015 Mar;347(6229):1414–1416.
  • Perfect JR. The antifungal pipeline: a reality check. Nat Rev Drug Discov. 2017 Sep;16(9):603–616.
  • Tverdek FP, Kofteridis D, Kontoyiannis DP. Antifungal agents and liver toxicity: a complex interaction. Expert Rev Anti Infect Ther. 2016 Aug;14(8):765–776.
  • Butts A, Reitler P, Nishimoto AT, et al. A Systematic Screen Reveals a Diverse Collection of Medications That Induce Antifungal Resistance in Candida Species. Antimicrob Agents Chemother. 2019 May;63(5): DOI:10.1128/AAC.00054-19
  • Theill L, Dudiuk C, Morano S, et al. Prevalence and antifungal susceptibility of Candida albicans and its related species Candida dubliniensis and Candida africana isolated from vulvovaginal samples in a hospital of Argentina. Rev Argent Microbiol. 2016 Jan-Mar;48(1):43–49.
  • Junqueira JC, Vilela SFG, Rossoni RD, et al. Oral colonization by yeasts in HIV-positive patients in Brazil. Rev Inst Med Trop Sao Paulo. 2012;54(1):17–24.
  • Santos ER, Dal Forno CF, Hernandez MG, et al. Susceptibility of Candida spp. isolated from blood cultures as evaluated using the M27-A3 and new M27-S4 approved breakpoints. Rev Inst Med Trop Sao Paulo. 2014 Nov-Dec;56(6):477–482.
  • Fuller J, Dingle TC, Bull A, et al. Species distribution and antifungal susceptibility of invasive Candida isolates from Canadian hospitals: results of the CANWARD 2011-16 study. J Antimicrob Chemother. 2019 Aug 1;74(Suppl 4):iv48–iv54.
  • ZR Z, Tian G, YH D, et al. Surveillance study of the prevalence, species distribution, antifungal susceptibility, risk factors and mortality of invasive candidiasis in a tertiary teaching hospital in Southwest China. BMC Infect Dis. 2019 Nov 7;19(1):939.
  • Waikhom SD, Afeke I, Kwawu GS, et al. Prevalence of vulvovaginal candidiasis among pregnant women in the Ho municipality, Ghana: species identification and antifungal susceptibility of Candida isolates. BMC Pregnancy Childbirth. 2020 May 6;20(1):266.
  • Jahanshiri Z, Manifar S, Moosa H, et al. Oropharyngeal candidiasis in head and neck cancer patients in Iran: species identification, antifungal susceptibility and pathogenic characterization. J Mycol Med. 2018 Jun;28(2):361–366.
  • Ryan P, Motherway C, Powell J, et al. Candidaemia in an Irish intensive care unit setting between 2004 and 2018 reflects increased incidence of Candida glabrata. J Hosp Infect. 2019 Jul;102(3):347–350.
  • Prigitano A, Cavanna C, Passera M, et al. Evolution of fungemia in an Italian region. J Mycol Med. 2020 Apr;30(1):100906.
  • Bustamante B, Martins MA, Bonfietti LX, et al. Species distribution and antifungal susceptibility profile of Candida isolates from bloodstream infections in Lima, Peru. J Med Microbiol. 2014 Jun;63(Pt 6):855–860.
  • Rodriguez L, Bustamante B, Huaroto L, et al. A multi-centric Study of Candida bloodstream infection in Lima-Callao, Peru: species distribution, antifungal resistance and clinical outcomes. PLoS One. 2017;12(4):e0175172.
  • Alkharashi N, Aljohani S, Layqah L, et al. Candida Bloodstream Infection: changing Pattern of Occurrence and Antifungal Susceptibility over 10 Years in a Tertiary Care Saudi Hospital. Can J Infect Dis Med Microbiol. 2019;2019:2015692.
  • Rajendran R, Sherry L, Deshpande A, et al. A Prospective Surveillance Study of Candidaemia: epidemiology, Risk Factors, Antifungal Treatment and Outcome in Hospitalized Patients. Front Microbiol. 2016;7:915.
  • Falces-Romero I, Romero-Gomez MP, Moreno-Ramos F, et al. Epidemiology of bloodstream Candida species in a Spanish tertiary care hospital as a guide for implementation of T2MR (T2CANDIDA(R)) for rapid diagnosis of candidemia. Med Mycol. 2020 Jul;7. DOI:10.1093/mmy/myaa056
  • Wu PF, Liu WL, Hsieh MH, et al. Epidemiology and antifungal susceptibility of candidemia isolates of non-albicans Candida species from cancer patients. Emerg Microbes Infect. 2017 Oct;6(10):e87.
  • Dagi HT, Findik D, Senkeles C, et al. Identification and antifungal susceptibility of Candida species isolated from bloodstream infections in Konya, Turkey. Ann Clin Microbiol Antimicrob. 2016 May 31;15(1):36.
  • Toda M, Williams SR, Berkow EL, et al. Population-Based Active Surveillance for Culture-Confirmed Candidemia - Four Sites, United States, 2012-2016. MMWR Surveill Summ. 2019 Sep 27;68(8):1–15.
  • Szekely A, Borman AM, Johnson EM. Candida auris Isolates of the Southern Asian and South African Lineages Exhibit Different Phenotypic and Antifungal Susceptibility Profiles In Vitro. J Clin Microbiol. 2019 May;57(5). DOI:10.1128/JCM.02055-18
  • Vallabhaneni S, Kallen A, Tsay S, et al. Investigation of the First Seven Reported Cases of Candida auris, a Globally Emerging Invasive, Multidrug-Resistant Fungus - United States, May 2013-August 2016. MMWR Morb Mortal Wkly Rep. 2016 Nov 11;65(44):1234–1237.
  • Ruiz-Gaitan AC, Canton E, Fernandez-Rivero ME, et al. Outbreak of Candida auris in Spain: A comparison of antifungal activity by three methods with published data. Int J Antimicrob Agents. 2019 May;53(5):541–546.
  • Baginski M, Amphotericin CJ. B and its new derivatives - mode of action. Curr Drug Metab. 2009 Jun;10(5):459–469.
  • Rodrigues CF, Liposomal HM. Deoxycholate Amphotericin B Formulations: effectiveness against Biofilm Infections of Candida spp. Pathogens. 2017 Dec 1;6(4):4.
  • Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol. 2003 Jun;11(6):272–279.
  • Ahmad S, Joseph L, Parker JE, et al. ERG6 and ERG2 Are Major Targets Conferring Reduced Susceptibility to Amphotericin B in Clinical Candida glabrata Isolates in Kuwait. Antimicrob Agents Chemother. 2019 Feb;63(2). doi:10.1128/AAC.01900-18
  • Lohner K. Antimicrobial mechanisms: a sponge against fungal infections. Nat Chem Biol. 2014 Jun;10(6):411–412.
  • Anderson TM, Clay MC, Cioffi AG, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014 May;10(5):400–406.
  • Kristanc L, Bozic B, Jokhadar SZ, et al. The pore-forming action of polyenes: from model membranes to living organisms. Biochim Biophys Acta Biomembr. 2019 Feb 1;1861(2):418–430.
  • Torrado JJ, Espada R, Ballesteros MP, et al. Amphotericin B formulations and drug targeting. J Pharm Sci. 2008 Jul;97(7):2405–2425.
  • Alves D, Vaz AT, Grainha T, et al. Design of an Antifungal Surface Embedding Liposomal Amphotericin B Through a Mussel Adhesive-Inspired Coating Strategy. Front Chem. 2019;7:431.
  • Caillet J, Bergès J JL. Theoretical study of the self-association of amphotericin B. Biochim Biophys Acta. 1995;1240:179–195.
  • Steimbach LM, Tonin FS, Virtuoso S, et al. Efficacy and safety of amphotericin B lipid-based formulations-A systematic review and meta-analysis. Mycoses. 2017 Mar;60(3):146–154.
  • Gintjee TJ, Donnelley MA, Thompson GR 3rd. Aspiring Antifungals: review of Current Antifungal Pipeline Developments. J Fungi (Basel). 2020 Feb 25;6:1.
  • Azoulay E, Timsit JF, Lautrette A, et al. Weekly high-dose liposomal amphotericin B (L-AmB) in critically ill septic patients with multiple Candida colonization: the AmBiDex study. PLoS One. 2017;12(5):e0177093.
  • Young LY, Hull CM, Heitman J. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother. 2003 Sep;47(9):2717–2724.
  • Kannan A, Asner SA, Trachsel E, et al. Comparative Genomics for the Elucidation of Multidrug Resistance in Candida lusitaniae. mBio. 2019 Dec 24;10(6). DOI:10.1128/mBio.02512-19
  • Samaranayake LP, Keung Leung W, Jin L. Oral mucosal fungal infections. Periodontol 2000. 2009 Feb;49(1):39–59.
  • Lyu X, Zhao C, Yan ZM, et al. Efficacy of nystatin for the treatment of oral candidiasis: a systematic review and meta-analysis. Drug Des Devel Ther. 2016;10:1161–1171.
  • Quindos G, Gil-Alonso S, Marcos-Arias C, et al. Therapeutic tools for oral candidiasis: current and new antifungal drugs. Med Oral Patol Oral Cir Bucal. 2019 Mar 1;24(2):e172–e180.
  • Fan S, Liu X, Wu C, et al. Vaginal nystatin versus oral fluconazole for the treatment for recurrent vulvovaginal candidiasis. Mycopathologia. 2015 Feb;179(1–2):95–101.
  • Yu SY, Zhang L, Chen S, et al. Candida isolates causing refractory or recurrent oropharyngeal candidiasis in 11 hospitals in China. Infect Drug Resist. 2019;12:865–875.
  • Scheibler E, da Silva RM, Leite CE, et al. Stability and efficacy of combined nystatin and chlorhexidine against suspensions and biofilms of Candida albicans. Arch Oral Biol. 2018 May;89:70–76.
  • Liu W, Guan X, Yu Z, et al. A Drug-drug Interaction Between Cyclosporine and Nystatin. Clin Ther. 2018 Apr;40(4):660–662.
  • Zhang X, Li T, Chen X, et al. Nystatin enhances the immune response against Candida albicans and protects the ultrastructure of the vaginal epithelium in a rat model of vulvovaginal candidiasis. BMC Microbiol. 2018 Oct 25;18(1):166.
  • Kim DH, Rhim BY, Eo SK, et al. Differential regulation of CC chemokine ligand 2 and CXCL8 by antifungal agent nystatin in macrophages. Biochem Biophys Res Commun. 2013 Aug 2;437(3):392–396.
  • Maertens JA. History of the development of azole derivatives. Clin Microbiol Infect. 2004 Mar;10(Suppl 1):1–10.
  • Lee H, Lee DG. Novel Approaches for Efficient Antifungal Drug Action. J Microbiol Biotechnol. 2018 Nov 28;28(11):1771–1781.
  • Isham N, Ghannoum MA. Antifungal activity of miconazole against recent Candida strains. Mycoses. 2010 Sep;53(5):434–437.
  • Gupta AK, Daigle D, Foley KA. Drug safety assessment of oral formulations of ketoconazole. Expert Opin Drug Saf. 2015 Feb;14(2):325–334.
  • Vanden Bossche H, Koymans L. Cytochromes P450 in fungi. Mycoses. 1998;41(Suppl 1):32–38.
  • Campoy S, Adrio JL. Antifungals. Biochem Pharmacol. 2017 Jun 1;133:86–96.
  • Lei J, Xu J, Wang T. In vitro susceptibility of Candida spp. to fluconazole, itraconazole and voriconazole and the correlation between triazoles susceptibility: results from a five-year study. J Mycol Med. 2018 Jun;28(2):310–313.
  • Rodrigues CF, Goncalves B, Rodrigues ME, et al. The Effectiveness of Voriconazole in Therapy of Candida glabrata’s Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression. Mycopathologia. 2017 Aug;182(7–8):653–664.
  • Wang Y, Yang Q, Chen L, et al. Cross-resistance between voriconazole and fluconazole for non-albicans Candida infection: a case-case-control study. Eur J Clin Microbiol Infect Dis. 2017 Nov;36(11):2117–2126.
  • Thaler F, Bernard B, Tod M, et al. Fluconazole penetration in cerebral parenchyma in humans at steady state. Antimicrob Agents Chemother. 1995 May;39(5):1154–1156.
  • Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin Infect Dis. 2016 Feb 15;62(4):e1–50.
  • Molgaard-Nielsen D, Svanstrom H, Melbye M, et al. Association between use of oral fluconazole during pregnancy and risk of spontaneous abortion and stillbirth. JAMA. 2016 Jan 5;315(1):58–67.
  • Zhu Y, Bateman BT, Gray KJ, et al. Oral fluconazole use in the first trimester and risk of congenital malformations: population based cohort study. BMJ. 2020 May;20(369):m1494.
  • Yu DT, Peterson JF, Seger DL, et al. Frequency of potential azole drug-drug interactions and consequences of potential fluconazole drug interactions. Pharmacoepidemiol Drug Saf. 2005 Nov;14(11):755–767.
  • Nakagita K, Wada K, Terada Y, et al. Effect of fluconazole on the pharmacokinetics of everolimus and tacrolimus in a heart transplant recipient: case report. Int J Clin Pharmacol Ther. 2018 Jun;56(6):270–276.
  • Michalets EL, Williams CR. Drug interactions with cisapride: clinical implications. Clin Pharmacokinet. 2000 Jul;39(1):49–75.
  • Fang J, Huang B, Ding Z. Efficacy of antifungal drugs in the treatment of oral candidiasis: A Bayesian network meta-analysis. J Prosthet Dent. 2020 Mar 10:S0022-3913(20)30076-7.
  • Story K, Sobel R. Fluconazole prophylaxis in prevention of symptomatic candida vaginitis. Curr Infect Dis Rep. 2020 Jan 21;22(1):2.
  • Qin F, Wang Q, Zhang C, et al. Efficacy of antifungal drugs in the treatment of vulvovaginal candidiasis: a Bayesian network meta-analysis. Infect Drug Resist. 2018;11:1893–1901.
  • Denison HJ, Worswick J, Bond CM, et al. Oral versus intra-vaginal imidazole and triazole anti-fungal treatment of uncomplicated vulvovaginal candidiasis (thrush). Cochrane Database Syst Rev. 2020 Aug;24(8):CD002845.
  • Miranda-Cadena K, Marcos-Arias C, Mateo E, et al. Prevalence and antifungal susceptibility profiles of Candida glabrata, Candida parapsilosis and their close-related species in oral candidiasis. Arch Oral Biol. 2018;95:100–107.
  • Saxon Lead Author G, Edwards A, Rautemaa-Richardson R, et al. British association for sexual health and HIV national guideline for the management of vulvovaginal candidiasis (2019). Int J STD AIDS. 2020 Oct;31(12):1124–1144.
  • Kale P, Johnson LB. Second-generation azole antifungal agents. Drugs Today (Barc). 2005 Feb;41(2):91–105.
  • Lindsay J, Sandaradura I, Wong K, et al. Serum levels, safety and tolerability of new formulation SUBA-itraconazole prophylaxis in patients with haematological malignancy or undergoing allogeneic stem cell transplantation. J Antimicrob Chemother. 2017 Dec 1;72(12):3414–3419.
  • Nield B, Larsen SR, van Hal SJ. Clinical experience with new formulation SUBA(R)-itraconazole for prophylaxis in patients undergoing stem cell transplantation or treatment for haematological malignancies. J Antimicrob Chemother. 2019 Oct 1;74(10):3049–3055.
  • Heimann SM, Penack O, Heinz WJ, et al. Intravenous and tablet formulation of posaconazole in antifungal therapy and prophylaxis: A retrospective, non-interventional, multicenter analysis of hematological patients treated in tertiary-care hospitals. Int J Infect Dis. 2019 Jun;83:130–138.
  • Sanchis M, Guarro J, Sutton DA, et al. Voriconazole and posaconazole therapy for experimental Candida lusitaniae infection. Diagn Microbiol Infect Dis. 2016 Jan;84(1):48–51.
  • AMS E-G, El-Zimaity M, Elafifi AM, et al. Effectiveness and Cost-Effectiveness of Prophylactic Voriconazole and Fluconazole Regarding Prevention of Post-hematopoietic Stem Cell Transplantation Invasive Fungal Infection and Its Related Death: A Single Center Experience. Indian J Hematol Blood Transfus. 2020 Oct;36(4):680–689.
  • Devanlay C, Tavernier-Tardy E, Bourmaud A, et al. Impact of fluconazole versus posaconazole prophylaxis on the incidence of fungal infections in patients receiving induction chemotherapy for acute myeloid leukemia. Biomed J. 2015 May-Jun;38(3):235–243.
  • Yi WM, Schoeppler KE, Jaeger J, et al. Voriconazole and posaconazole therapeutic drug monitoring: a retrospective study. Ann Clin Microbiol Antimicrob. 2017 Sep 11;16(1):60.
  • Pham AN, Bubalo JS, Lewis JS 2nd. Comparison of posaconazole serum concentrations from haematological cancer patients on posaconazole tablet and oral suspension for treatment and prevention of invasive fungal infections. Mycoses. 2016 Apr;59(4):226–233.
  • Belling M, AS K, Shillingburg A, et al. Evaluation of Serum Posaconazole Concentrations in Patients with Hematological Malignancies Receiving Posaconazole Suspension Compared to the Delayed-Release Tablet Formulation. Leuk Res Treatment. 2017;2017:3460892.
  • Hachem R, Assaf A, Numan Y, et al. Comparing the safety and efficacy of voriconazole versus posaconazole in the prevention of invasive fungal infections in high-risk patients with hematological malignancies. Int J Antimicrob Agents. 2017 Sep;50(3):384–388.
  • Mizuno S, Itoh M, Matsuo H, et al. Case of ultraviolet B-mediated photosensitivity during the administration of voriconazole. J Dermatol. 2019 Sep;46(9):e327–e328.
  • Tang H, Shi W, Song Y, et al. Voriconazole exposure and risk of cutaneous squamous cell carcinoma among lung or hematopoietic cell transplant patients: A systematic review and meta-analysis. J Am Acad Dermatol. 2019 Feb;80(2):500–507 e10.
  • Hamandi B, Fegbeutel C, Silveira FP, et al. Voriconazole and squamous cell carcinoma after lung transplantation: A multicenter study. Am J Transplant. 2018 Jan;18(1):113–124.
  • Kolaitis NA, Duffy E, Zhang A, et al. Voriconazole increases the risk for cutaneous squamous cell carcinoma after lung transplantation. Transpl Int. 2017 Jan;30(1):41–48.
  • Parkes LO, Cheng MP, Sheppard DC. Visual Hallucinations Associated with High Posaconazole Concentrations in Serum. Antimicrob Agents Chemother. 2016 Feb;60(2):1170–1171.
  • Allen D, Wilson D, Drew R, et al. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev Anti Infect Ther. 2015 Jun;13(6):787–798.
  • Kullberg BJ, Viscoli C, Pappas PG, et al. Isavuconazole versus caspofungin in the treatment of candidemia and other invasive candida infections: the active trial. Clin Infect Dis. 2019 May 30;68(12):1981–1989.
  • Viljoen J, Azie N, Schmitt-Hoffmann AH, et al. A phase 2, randomized, double-blind, multicenter trial to evaluate the safety and efficacy of three dosing regimens of isavuconazole compared with fluconazole in patients with uncomplicated esophageal candidiasis. Antimicrob Agents Chemother. 2015 Mar;59(3):1671–1679.
  • Peyton LR, Gallagher S, Hashemzadeh M. Triazole antifungals: a review. Drugs Today (Barc). 2015 Dec;51(12):705–718.
  • Hendrickson JA, Hu C, Aitken SL, et al. Antifungal resistance: a concerning trend for the present and future. Curr Infect Dis Rep. 2019 Nov 16;21(12):47.
  • Arendrup MC, Patterson TF. Multidrug-Resistant Candida: epidemiology, Molecular Mechanisms, and Treatment. J Infect Dis. 2017 Aug 15;216(suppl_3):S445–S451.
  • Hadrich I, Ayadi A. Epidemiology of antifungal susceptibility: review of literature. J Mycol Med. 2018 Sep;28(3):574–584.
  • Farmakiotis D, Kontoyiannis DP. Epidemiology of antifungal resistance in human pathogenic yeasts: current viewpoint and practical recommendations for management. Int J Antimicrob Agents. 2017 Sep;50(3):318–324.
  • RD C, Lamping E, AR H, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009 Apr;22(2):291–321. Table of Contents
  • Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics (Basel). 2020 Jun 9;9(6):312.
  • Xiang MJ, Liu JY, Ni PH, et al. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res. 2013 Jun;13(4):386–393.
  • Flowers SA, Colon B, Whaley SG, et al. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother. 2015 Jan;59(1):450–460.
  • Li QQ, Tsai HF, Mandal A, et al. Sterol uptake and sterol biosynthesis act coordinately to mediate antifungal resistance in Candida glabrata under azole and hypoxic stress. Mol Med Rep. 2018 May;17(5):6585–6597.
  • Prasad R, Rawal MK. Efflux pump proteins in antifungal resistance. Front Pharmacol. 2014;5:202.
  • Rocha MFG, Bandeira SP, de Alencar LP, et al. Azole resistance in candida albicans from animals: highlights on efflux pump activity and gene overexpression. Mycoses. 2017 Jul;60(7):462–468.
  • Farahyar S, Zaini F, Kordbacheh P, et al. Expression of Efflux Pumps and Fatty Acid Activator One Genes in Azole Resistant Candida Glabrata Isolated From Immunocompromised Patients. Acta Med Iran. 2016 Jul;54(7):458–464.
  • de Souza MC, Santos AG, Reis AM. Adverse Drug Reactions in Patients Receiving Systemic Antifungal Therapy at a High-Complexity Hospital. J Clin Pharmacol. 2016 Dec;56(12):1507–1515.
  • Rybak JM, Doorley LA, Nishimoto AT, et al. Abrogation of Triazole Resistance upon Deletion of CDR1 in a Clinical Isolate of Candida auris. Antimicrob Agents Chemother. 2019 Apr;63(4). doi:10.1128/AAC.00057-19
  • Chowdhary A, Prakash A, Sharma C, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018 Apr 1;73(4):891–899.
  • Denning DW, Denning DW. Echinocandins: a new class of antifungal. J Antimicrob Chemother. 2002 Jun;49(6):889–891.
  • Bassetti M, Righi E, Montravers P, et al. What has changed in the treatment of invasive candidiasis? A look at the past 10 years and ahead. J Antimicrob Chemother. 2018 Jan 1;73(suppl_1):i14–i25.
  • Denning DW. Echinocandin antifungal drugs. Lancet. 2003 Oct 4;362(9390): 1142–1151.
  • Eschenauer G, Depestel DD, Carver PL. Comparison of echinocandin antifungals. Ther Clin Risk Manag. 2007 3;Mar(1):71–97.
  • Chapman B, Slavin M, Marriott D, et al. Changing epidemiology of candidaemia in Australia. J Antimicrob Chemother. 2017 Apr 1;72(4):1103–1108.
  • Kritikos A, Neofytos D, Khanna N, et al. Accuracy of Sensititre YeastOne echinocandins epidemiological cut-off values for identification of FKS mutant Candida albicans and Candida glabrata: a ten year national survey of the Fungal Infection Network of Switzerland (FUNGINOS). Clin Microbiol Infect. 2018 Nov;24(11):1214e1–1214 e4.
  • Taj-Aldeen SJ, Salah H, Perez WB, et al. Molecular Analysis of Resistance and Detection of Non-Wild-Type Strains Using Etest Epidemiological Cutoff Values for Amphotericin B and Echinocandins for Bloodstream Candida Infections from a Tertiary Hospital in Qatar. Antimicrob Agents Chemother. 2018 Sep;62(9). doi:10.1128/AAC.00214-18
  • Rivero-Menendez O, Navarro-Rodriguez P, Bernal-Martinez L, et al. Clinical and Laboratory Development of Echinocandin Resistance in Candida glabrata: molecular Characterization. Front Microbiol. 2019;10:1585.
  • Walker LA, Gow NA, Munro CA. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother. 2013 Jan;57(1):146–154.
  • Walker LA, Munro CA. Caspofungin Induced Cell Wall Changes of Candida Species Influences Macrophage Interactions. Front Cell Infect Microbiol. 2020;10:164.
  • Ostrowsky B, Greenko J, Adams E, et al. Candida auris Isolates Resistant to Three Classes of Antifungal Medications - New York, 2019. MMWR Morb Mortal Wkly Rep. 2020 Jan 10;69(1):6–9.
  • Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin Infect Dis. 2017 Jan 15;64(2):134–140.
  • Garcia-Effron G, Katiyar SK, Park S, et al. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2008 Jul;52(7):2305–2312.
  • Diaz-Garcia J, Alcala L, Martin-Rabadan P, et al. Susceptibility of uncommon Candida species to systemic antifungals by the EUCAST methodology. Med Mycol. 2019 Nov;29. DOI:10.1093/mmy/myy064
  • Spettel K, Barousch W, Makristathis A, et al. Analysis of antifungal resistance genes in Candida albicans and Candida glabrata using next generation sequencing. PLoS One. 2019;14(1):e0210397.
  • Kordalewska M, Lee A, Park S, et al. Understanding Echinocandin Resistance in the Emerging Pathogen Candida auris. Antimicrob Agents Chemother. 2018 Jun;62(6). doi:10.1128/AAC.00238-18
  • Rodrigues CF, Correia A, Vilanova M, et al. Inflammatory Cell Recruitment in Candida glabrata Biofilm Cell-Infected Mice Receiving Antifungal Chemotherapy. J Clin Med. 2019 Jan 26;8(2):142.
  • Lee KK, Maccallum DM, Jacobsen MD, et al. Elevated Cell Wall Chitin in Candida albicans Confers Echinocandin Resistance In Vivo. Antimicrob Agents Chemother. 2012 Jan;56(1):208–217.
  • Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007 Jun 14;356(24):2472–2482.
  • Villaescusa T, Vazquez L, Bergua JM, et al. Micafungin as antifungal prophylaxis in non-transplanted haemotological patients. Rev Esp Quimioter. 2020 Feb;33(1):44–48.
  • Chen Q, Lin MH, Chen ML, et al. Efficacy and safety of micafungin for invasive candida infections: a meta-analysis of randomized controlled trials. Chin Med J (Engl). 2012 Jan;125(2):345–351.
  • Fujimoto K, Takemoto K. Efficacy of liposomal amphotericin B against four species of Candida biofilms in an experimental mouse model of intravascular catheter infection. J Infect Chemother. 2018 Dec;24(12):958–964.
  • Basas J, Palau M, Gomis X, et al. Efficacy of liposomal amphotericin B and anidulafungin using an antifungal lock technique (ALT) for catheter-related Candida albicans and Candida glabrata infections in an experimental model. PLoS One. 2019;14(2):e0212426..
  • Swaminathan S, Kamat S, Pinto NA. Echinocandins: their role in the management of Candida biofilms. Indian J Med Microbiol. 2018 Jan-Mar;36(1):87–92.
  • Alves IA, Savi FM, CBJ DV, et al. The Patenting and Technological Trends in Candidiasis Treatment: A Systematic Review (2014-2018). Curr Top Med Chem. 2019;19(28):2629–2639.
  • Van Daele R, Spriet I, Wauters J, et al. Antifungal drugs: what brings the future? Med Mycol. 2019 Jun 1;57(Supplement_3):S328–S343.
  • Li D, She X, Calderone R. The antifungal pipeline: the need is established. Are there new compounds? FEMS Yeast Res. 2020 Jun 1;20(4). DOI:10.1093/femsyr/foaa023
  • Antifungal PDUMASGGRC. Peptides as Therapeutic Agents. Front Cell Infect Microbiol. 2020 Mar 17;10:105.
  • Santangelo R, Paderu P, Delmas G, et al. Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother. 2000 Sep;44(9):2356–2360.
  • Shrestha SK, Garzan A, Garneau-Tsodikova S. Novel alkylated azoles as potent antifungals. Eur J Med Chem. 2017 Jun 16;133:309–318.
  • Xie F, Ni T, Zhao J, et al. Design, synthesis, and in vitro evaluation of novel antifungal triazoles. Bioorg Med Chem Lett. 2017 May 15;27(10):2171–2173.
  • Hoekstra WJ, Garvey EP, Moore WR, et al. Design and optimization of highly-selective fungal CYP51 inhibitors. Bioorg Med Chem Lett. 2014 Aug 1;24(15):3455–3458.
  • Warrilow AG, Hull CM, Parker JE, et al. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother. 2014 Dec;58(12):7121–7127.
  • Rauseo AM, Coler-Reilly A, Larson L, et al. Hope on the Horizon: novel Fungal Treatments in Development. Open Forum Infect Dis. 2020 Feb 7;7(2):ofaa016.
  • Wiederhold NP, Lockhart SR, Najvar LK, et al. The Fungal Cyp51-Specific Inhibitor VT-1598 Demonstrates In Vitro and In Vivo Activity against Candida auris. Antimicrob Agents Chemother. 2019 Feb 26;63(3):e02233-18.
  • Silva LN, de Mello TP, de Souza Ramos L, et al. New and promising chemotherapeutics for emerging infections involving drug-resistant non-albicans candida species. Curr Top Med Chem. 2019;19(28):2527–2553.
  • Garvey EP, Hoekstra WJ, Schotzinger RJ, et al. Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis. Antimicrob Agents Chemother. 2015 Sep;59(9):5567–5573.
  • Sofjan AK, Mitchell A, Shah DN, et al. Rezafungin (CD101), a next-generation echinocandin: A systematic literature review and assessment of possible place in therapy. J Glob Antimicrob Resist. 2018 Sep;14:58–64.
  • Hager CL, Larkin EL, Long LA, et al. Evaluation of the efficacy of rezafungin, a novel echinocandin, in the treatment of disseminated Candida auris infection using an immunocompromised mouse model. J Antimicrob Chemother. 2018 Aug 1;73(8):2085–2088.
  • Lee A, Prideaux B, Zimmerman M, et al. Penetration of Ibrexafungerp (formerly SCY-078) at the site of infection in an Intra-abdominal candidiasis mouse model. Antimicrob Agents Chemother. 2020 Feb 21;64(3):e02268-19.
  • Kuhnert E, Li Y, Lan N, et al. Enfumafungin synthase represents a novel lineage of fungal triterpene cyclases. Environ Microbiol. 2018 Sep;20(9):3325–3342.
  • Scorneaux B, Angulo D, Borroto-Esoda K, et al. SCY-078 Is Fungicidal against Candida Species in Time-Kill Studies. Antimicrob Agents Chemother. 2017 Mar;61(3). doi:10.1128/AAC.01961-16
  • Larkin E, Hager C, Chandra J, et al. The Emerging Pathogen Candida auris: growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation. Antimicrob Agents Chemother. 2017 May;61(5). doi:10.1128/AAC.02396-16
  • Pfaller MA, Messer SA, Rhomberg PR, et al. Differential activity of the oral glucan synthase inhibitor SCY-078 against wild-type and echinocandin-resistant strains of candida species. Antimicrob Agents Chemother. 2017 Jul 25;61(8):e00161-17.
  • SA W, Randolph R, Park S, et al. Preclinical Pharmacokinetics and Pharmacodynamic Target of SCY-078, a First-in-Class Orally Active Antifungal Glucan Synthesis Inhibitor, in Murine Models of Disseminated Candidiasis. Antimicrob Agents Chemother. 2017 Apr;61(4). doi:10.1128/AAC.02068-16
  • Arendrup MC, Jorgensen KM, Hare RK, et al. EUCAST in vitro activity of Ibrexafungerp (SCY-078) against C. auris isolates; comparison with activity against C. albicans and C. glabrata and with that of six comparators. Antimicrob Agents Chemother.2020 Feb 21;64(3):e02136-19.
  • Davis MR, Donnelley MA, Thompson GR. Ibrexafungerp: A novel oral glucan synthase inhibitor. Med Mycol. 2020 Jul 1;58(5):579–592.
  • Azie N, Angulo D, Dehn B, et al. Oral Ibrexafungerp: an investigational agent for the treatment of vulvovaginal candidiasis. Expert Opin Investig Drugs. 2020 Sep;29(9):893–900.
  • Ananda-Rajah MR, Slavin MA, Thursky KT. The case for antifungal stewardship. Curr Opin Infect Dis. 2012 Feb;25(1):107–115.
  • Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017 Dec;17(12):e383–e392.
  • Alexander BD, Johnson MD, Pfeiffer CD, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013 Jun;56(12):1724–1732.
  • Kapoor M, Moloney M, Soltow QA, et al. Evaluation of Resistance Development to the Gwt1 Inhibitor Manogepix (APX001A) in Candida Species. Antimicrob Agents Chemother. 2019 Dec 20;64(1):1.
  • Zhao M, Lepak AJ, VanScoy B, et al. In Vivo Pharmacokinetics and Pharmacodynamics of APX001 against Candida spp. in a Neutropenic Disseminated Candidiasis Mouse Model. Antimicrob Agents Chemother. 2018 Mar 27;62(4):e02542-17.
  • Arendrup MC, Jorgensen KM. Manogepix (APX001A) displays potent in vitro activity against human pathogenic yeast, but with an unexpected correlation to fluconazole MICs. Antimicrob Agents Chemother. 2020 Jun 23;64(7):e00429-20.
  • Wiederhold NP, Najvar LK, Shaw KJ, et al. Efficacy of Delayed Therapy with Fosmanogepix (APX001) in a Murine Model of Candida auris Invasive Candidiasis. Antimicrob Agents Chemother. 2019 Nov;63(11). doi:10.1128/AAC.01120-19
  • Hager CL, Larkin EL, Long L, et al. In Vitro and In Vivo Evaluation of the Antifungal Activity of APX001A/APX001 against Candida auris. Antimicrob Agents Chemother. 2018 Mar;62(3):e02319-17.
  • Liston SD, Whitesell L, Kapoor M, et al. Enhanced Efflux Pump Expression in Candida Mutants Results in Decreased Manogepix Susceptibility. Antimicrob Agents Chemother. 2020 Apr 21;64(5). 10.1128/AAC.00261-20
  • Wiederhold NP, Najvar LK, Jaramillo R, et al. The novel arylamidine T-2307 demonstrates in vitro and in vivo activity against candida auris. Antimicrob Agents Chemother. 20 20 Feb 21;64(3):e02198-19.
  • Yamashita K, Miyazaki T, Fukuda Y, et al. The Novel Arylamidine T-2307 Selectively Disrupts Yeast Mitochondrial Function by Inhibiting Respiratory Chain Complexes. Antimicrob Agents Chemother. 2019 Aug;63(8). doi:10.1128/AAC.00374-19
  • Mitsuyama J, Nomura N, Hashimoto K, et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother. 2008 Apr;52(4):1318–1324.
  • Singla RK, Dubey AK. Molecules and Metabolites from Natural Products as Inhibitors of Biofilm in Candida spp. pathogens. Curr Top Med Chem. 2019;19(28):2567–2578.
  • Jackson N, Czaplewski L, Piddock LJV. Discovery and development of new antibacterial drugs: learning from experience? J Antimicrob Chemother. 2018 Jun 1;73(6):1452–1459.
  • Futuro DO, Ferreira PG, Nicoletti CD, et al. The Antifungal Activity of Naphthoquinones: an Integrative Review. An Acad Bras Cienc. 2018;90(1 Suppl 2):1187–1214.
  • Zida A, Bamba S, Yacouba A, et al. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J Mycol Med. 2017 Mar;27(1):1–19.
  • Barbosa JO, Rossoni RD, Vilela SF, et al. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans. PLoS One. 2016;11(3):e0150457.
  • Rossoni RD, de Barros PP, de Alvarenga JA, et al. Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: identification of potential probiotic candidates to prevent oral candidiasis. Biofouling. 2018 Feb;34(2):212–225.
  • Dos Santos JD, Fugisaki LRO, Medina RP, et al. Streptococcus mutans Secreted Products Inhibit Candida albicans Induced Oral Candidiasis. Front Microbiol. 2020;11:1605.
  • Bonvicini F, Gentilomi GA, Bressan F, et al. Functionalization of the Chalcone Scaffold for the Discovery of Novel Lead Compounds Targeting Fungal Infections. Molecules. 2019 Jan 21;24(2):372.
  • Romo JA, Pierce CG, Esqueda M, et al. In Vitro Characterization of a Biaryl Amide Anti-virulence Compound Targeting Candida albicans Filamentation and Biofilm Formation. Front Cell Infect Microbiol. 2018;8:227.
  • Cui J, Ren B, Tong Y, et al. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence. 2015;6(4):362–371.
  • Gizinska M, Staniszewska M, Ochal Z. Novel Sulfones with Antifungal Properties: antifungal Activities and Interactions with Candida spp. Virulence Factors. Mini Rev Med Chem. 2019;19(1):12–21.
  • Grainha TRR, Jorge P, Perez-Perez M, et al. Exploring anti-quorum sensing and anti-virulence based strategies to fight Candida albicans infections: an in silico approach. FEMS Yeast Res. 2018 May 1;18(3). DOI:10.1093/femsyr/foy022
  • Romo JA, Pierce CG, Chaturvedi AK, et al. Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of Candida albicans Filamentation. mBio. 2017 Dec 5;8(6). 10.1128/mBio.01991-17
  • Vila T, Romo JA, Pierce CG, et al. Targeting Candida albicans filamentation for antifungal drug development. Virulence. 2017 Feb 17;8(2):150–158.
  • Ahmad Khan MS, Alshehrei F, Al-Ghamdi SB, et al. Virulence and biofilms as promising targets in developing antipathogenic drugs against candidiasis. Future Sci OA. 2020 Feb 3;6(2):FSO440.
  • Prasath KG, Tharani H, Kumar MS, et al. Palmitic Acid Inhibits the Virulence Factors of Candida tropicalis: biofilms, Cell Surface Hydrophobicity, Ergosterol Biosynthesis, and Enzymatic Activity. Front Microbiol. 2020;11:864.
  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004 Aug;3(8):673–683.
  • Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, et al. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov Today. 2015 Aug;20(8):1027–1034.
  • Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol. 20194; Apr4: 565–577.
  • Butts A, Krysan DJ. Antifungal drug discovery: something old and something new. PLoS Pathog. 2012 Sep;8(9):e1002870.
  • Oprea TI, Bauman JE, Bologa CG, et al. Drug Repurposing from an Academic Perspective. Drug Discov Today Ther Strateg. 2011 Winter;8(3–4):61–69.
  • Jadhav A, Bansode B, Phule D, et al. The antibacterial agent, moxifloxacin inhibits virulence factors of Candida albicans through multitargeting. World J Microbiol Biotechnol. 2017 May;33(5):96.
  • Eldesouky HE, Mayhoub A, Hazbun TR, et al. Reversal of Azole Resistance in Candida albicans by Sulfa Antibacterial Drugs. Antimicrob Agents Chemother. 2018 Mar;62(3). doi:10.1128/AAC.00701-17
  • Tsang CS, Hong I. HIV protease inhibitors differentially inhibit adhesion of Candida albicans to acrylic surfaces. Mycoses. 2010 Nov;53(6):488–494.
  • Fuchs BB, RajaMuthiah R, Souza AC, et al. Inhibition of bacterial and fungal pathogens by the orphaned drug auranofin. Future Med Chem. 2016;8(2):117–132.
  • Jung EH, Meyers DJ, Bosch J, et al. Novel Antifungal Compounds Discovered in Medicines for Malaria Venture’s Malaria Box. mSphere. 2018 Mar-Apr;3(2). doi:10.1128/mSphere.00537-17
  • Silva MP, Saraiva L, Pinto M, et al. Boronic Acids and Their Derivatives in Medicinal Chemistry: synthesis and Biological Applications. Molecules. 2020 Sep 21;25(18):18.
  • Rossoni RD, de Barros PP, Lopes L, et al. Effects of surface pre-reacted glass-ionomer (S-PRG) eluate on Candida spp.: antifungal activity, anti-biofilm properties, and protective effects on Galleria mellonella against C. albicans infection. Biofouling. 2019 Oct;35(9):997-1006.
  • Yousfi H, Cassagne C, Ranque S, et al. Repurposing of Ribavirin as an Adjunct Therapy against Invasive Candida Strains in an In Vitro Study. Antimicrob Agents Chemother. 2019 Oct;63(10). doi:10.1128/AAC.00263-19
  • Cassone A, De Bernardis F, Torosantucci A, et al. In vitro and in vivo anticandidal activity of human immunodeficiency virus protease inhibitors. J Infect Dis. 1999 Aug;180(2):448–453.
  • Calugi C, Guarna A, Trabocchi A. Insight into the structural similarity between HIV protease and secreted aspartic protease-2 and binding mode analysis of HIV-Candida albicans inhibitors. J Enzyme Inhib Med Chem. 2013 Oct;28(5):936–943.
  • Hoegl L, Thoma-Greber E, Rocken M, et al. HIV protease inhibitors influence the prevalence of oral candidosis in HIV-infected patients: a 2-year study. Mycoses. 1998 Sep-Oct;41(7–8):321–325.
  • Kean WF, Hart L, Buchanan WW. Auranofin. Br J Rheumatol. 1997 May;36(5):560–572.
  • She P, Liu Y, Wang Y, et al. Antibiofilm efficacy of the gold compound auranofin on dual species biofilms of Staphylococcus aureus and Candida sp. J Appl Microbiol. 2020 Jan;128(1):88–101.
  • Thangamani S, Maland M, Mohammad H, et al. Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway. Front Cell Infect Microbiol. 2017;7:4.
  • de Oliveira HC, Monteiro MC, Rossi SA, et al. Identification of Off-Patent Compounds That Present Antifungal Activity Against the Emerging Fungal Pathogen Candida auris. Front Cell Infect Microbiol. 2019;9:83.
  • Kim K, Zilbermintz L, Repurposing MM. FDA approved drugs against the human fungal pathogen, Candida albicans. Ann Clin Microbiol Antimicrob. 2015 Jun;9(14):32.
  • De Cremer K, Lanckacker E, Cools TL, et al. Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms. Antimicrob Agents Chemother. 2015 Jan;59(1):421–426.
  • Siles SA, Srinivasan A, Pierce CG, et al. High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors. Antimicrob Agents Chemother. 2013 Aug;57(8):3681–3687.
  • De Seta F, Schmidt M, Vu B, et al. Antifungal mechanisms supporting boric acid therapy of Candida vaginitis. J Antimicrob Chemother. 2009 Feb;63(2):325–336.
  • Wall G, Chaturvedi AK, Wormley FL Jr., et al. Screening a Repurposing Library for Inhibitors of Multidrug-Resistant Candida auris Identifies Ebselen as a Repositionable Candidate for Antifungal Drug Development. Antimicrob Agents Chemother. 2018 Oct;62(10). doi:10.1128/AAC.01084-18
  • Gupta P, Chanda R, Rai N, et al. Antihypertensive, Amlodipine Besilate Inhibits Growth and Biofilm of Human Fungal Pathogen Candida. Assay Drug Dev Technol. 2016 Jul;14(5):291–297.
  • Kathwate GH, Karuppayil SM. Tramadol, an Opioid Receptor Agonist: an Inhibitor of Growth, Morphogenesis, and Biofilm Formation in the Human Pathogen, Candida albicans. Assay Drug Dev Technol. 2016 Dec;14(10):567–572.
  • Wakharde AA, Halbandge SD, Phule DB, et al. Anticancer Drugs as Antibiofilm Agents in Candida albicans : potential Targets. Assay Drug Dev Technol. 2018 Jul;16(5):232–246.
  • Routh MM, Chauhan NM, Karuppayil SM. Cancer drugs inhibit morphogenesis in the human fungal pathogen, Candida albicans. Braz J Microbiol. . 2013;44(3):855–859.
  • Stylianou M, Kulesskiy E, Lopes JP, et al. Antifungal application of nonantifungal drugs. Antimicrob Agents Chemother. 2014;58(2):1055–1062.
  • Holbrook SYL, Garzan A, Dennis EK, et al. Repurposing antipsychotic drugs into antifungal agents: synergistic combinations of azoles and bromperidol derivatives in the treatment of various fungal infections. Eur J Med Chem. 2017 Oct;20(139):12–21.
  • Kathwate GH, Shinde RB, Karuppayil SM. Antiepileptic Drugs Inhibit Growth, Dimorphism, and Biofilm Mode of Growth in Human Pathogen Candida albicans. Assay Drug Dev Technol. 2015 Jul-Aug;13(6):307–312.
  • Wiederhold NP, Patterson TF, Srinivasan A, et al. Repurposing auranofin as an antifungal: in vitro activity against a variety of medically important fungi. Virulence. 2017 Feb 17;8(2):138–142.
  • Nile C, Falleni M, Cirasola D, et al. Repurposing Pilocarpine Hydrochloride for Treatment of Candida albicans Infections. mSphere. 2019 Jan 23;4(1). 10.1128/mSphere.00689-18
  • Chavez-Dozal AA, Lown L, Jahng M, et al. In vitro analysis of finasteride activity against Candida albicans urinary biofilm formation and filamentation. Antimicrob Agents Chemother. 2014 Oct;58(10):5855–5862.
  • Sun N, Li D, Zhang Y, et al. Repurposing an inhibitor of ribosomal biogenesis with broad anti-fungal activity. Sci Rep. 2017 Dec 5;7(1):17014.
  • Gowri M, Jayashree B, Jeyakanthan J, et al. Sertraline as a promising antifungal agent: inhibition of growth and biofilm of Candida auris with special focus on the mechanism of action in vitro. J Appl Microbiol. 2020 Feb;128(2):426–437.
  • Li Y, Yang J, Li X, et al. The effect of Ginkgolide B combined with fluconazole against drug-resistant Candida albicans based on common resistance mechanisms. Int J Antimicrob Agents. 2020 May;23(2):106030.
  • Chen X, Ren B, Chen M, et al. ASDCD: antifungal synergistic drug combination database. PLoS One. 2014;9(1):e86499.
  • Lee Y, Puumala E, Robbins N, et al. Antifungal drug resistance: molecular mechanisms in candida albicans and beyond. Chem Rev. 2020 May 22.
  • Butts A, Palmer GE, Rogers PD. Antifungal adjuvants: preserving and extending the antifungal arsenal. Virulence. 2017 Feb 17;8(2):198–210.
  • Rodrigues CF, Alves DF, Henriques M. Combination of Posaconazole and Amphotericin B in the Treatment of Candida glabrata Biofilms. Microorganisms. 2018 Dec 4;6(4):123.
  • Reginatto P, Bergamo VZ, Berlitz SJ, et al. Rational selection of antifungal drugs to propose a new formulation strategy to control Candida biofilm formation on venous catheters. Braz J Microbiol. 2020 Feb;51(3):19.
  • Ahuja T, Fong K, Louie E. Combination antifungal therapy for treatment of Candida parapsilosis prosthetic valve endocarditis and utility of T2Candida Panel(R): A case series. IDCases. 2019;15:e00525.
  • Alvarez C, Andes DR, Kang JY, et al. Antifungal Efficacy of an Intravenous Formulation Containing Monomeric Amphotericin B, 5-Fluorocytosine, and Saline for Sodium Supplementation. Pharm Res. 2017 May;34(5):1115–1124.
  • Fernandes KE, Weeks K, Carter DA. Lactoferrin is broadly active against yeasts and highly synergistic with amphotericin B. Antimicrob Agents Chemother. 2020  Apr 21;64(5):e02284-19.
  • Chibebe Junior J, Sabino CP, Tan X, et al. Selective photoinactivation of Candida albicans in the non-vertebrate host infection model Galleria mellonella. BMC Microbiol. 2013 Oct 1;13(1):217.
  • Dal Lago V, França de Oliveira L, de Almeida Gonçalves K, et al. Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties [10.1039/C1JM12297E]. J Mater Chem. 2011;21(33):12267–12273.
  • Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother. 2018 Jan;97:1521–1537.
  • Zajaczkowski T, Wojcicki J. Lawczynski L, [Effect of polyenophosphatidylcholine on the antiparacoagulating activity of the aorta and fibrin monomer complexes in chronic experimental alcoholism]. Pol Tyg Lek. 1975 Feb 10;30(6):237–238.
  • Walsh TJ, Viviani MA, Arathoon E, et al. New targets and delivery systems for antifungal therapy. Med Mycol. 2000;38(Suppl 1):335–347.
  • Davis SS. Biomedical applications of nanotechnology–implications for drug targeting and gene therapy. Trends Biotechnol. 1997 Jun;15(6):217–224.
  • Moazeni M, Kelidari HR, Saeedi M, et al. Time to overcome fluconazole resistant Candida isolates: solid lipid nanoparticles as a novel antifungal drug delivery system. Colloids Surf B Biointerfaces. 2016 Jun;1(142):400–407.
  • Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev. 2004 Mar 27;56(5):675–711.
  • Jansook P, Pichayakorn W, Ritthidej GC. Amphotericin B-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): effect of drug loading and biopharmaceutical characterizations. Drug Dev Ind Pharm. 2018 Oct;44(10):1693–1700.
  • Sawant B, Khan T. Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomed Pharmacother. 2017 Dec;96:1478–1490.
  • Zhang Z, Tsai PC, Ramezanli T, et al. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 May-Jun;5(3):205–218.
  • El Rabey HA, Almutairi FM, Alalawy AI, et al. Augmented control of drug-resistant Candida spp. via fluconazole loading into fungal chitosan nanoparticles. Int J Biol Macromol. 2019 Sep;6(141):511–516.
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009 Jan-Feb;27(1):76–83.
  • Zhang H, Ji Z, Xia T, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano. 2012 May 22;6(5):4349–4368.
  • Hussain MA, Ahmed D, Anwar A, et al. Combination Therapy of Clinically Approved Antifungal Drugs Is Enhanced by Conjugation with Silver Nanoparticles. Int Microbiol. 2019 Jun;22(2):239–246.
  • Wnorowska U, Fiedoruk K, Piktel E, et al. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: current status and potential future applications. J Nanobiotechnology. 2020 Jan 2;18(1):3.
  • Ahmad A, Wei Y, Syed F, et al. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb Pathog. 2016 Aug;99:271–281.
  • Ademe M, Girma F. Candida auris: from Multidrug Resistance to Pan-Resistant Strains. Infect Drug Resist. 2020;13:1287–1294.
  • Iguchi S, Itakura Y, Yoshida A, et al. Candida auris: A pathogen difficult to identify, treat, and eradicate and its characteristics in Japanese strains. J Infect Chemother. 2019 Oct;25(10):743–749.
  • Alfouzan W, Dhar R, Albarrag A, et al. The emerging pathogen Candida auris: A focus on the Middle-Eastern countries. J Infect Public Health. 2019 Jul - Aug;12(4):451–459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.