392
Views
5
CrossRef citations to date
0
Altmetric
Review

Pharmacological strategies for improving the prognosis of glioblastoma

, ORCID Icon, , &
Pages 2019-2031 | Received 17 Feb 2021, Accepted 22 Jun 2021, Published online: 10 Jul 2021

References

  • Omuro A. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842.
  • Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005 Mar 10;352(10):987–996.
  • Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019;20(9):1100–1109.
  • Larsen JM, Martin DR, Byrne ME. Recent advances in delivery through the blood-brain barrier. Curr Top Med Chem. 2014;14(9):1148–1160.
  • Bou-Gharios J, Assi S, Bahmad HF, et al. The potential use of tideglusib as an adjuvant radio-therapeutic treatment for glioblastoma multiforme cancer stem-like cells. Pharmacol Rep. 2021;73(1):227–239.
  • Thomas AA, Brennan CW, DeAngelis LM, et al. Emerging Therapies for Glioblastoma. JAMA Neurol. 2014;71(11):1437.
  • Karachi A, Dastmalchi F, Mitchell DA, et al. Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro Oncol. 2018;20(12):1566–1572.
  • Thomas A, Tanaka M, Trepel J, et al. Temozolomide in the era of precision medicine. Cancer Res. 2017;77(4):823–826.
  • Shapira-Furman T, Serra R, Gorelick N, et al. Biodegradable wafers releasing temozolomide and carmustine for the treatment of brain cancer. J Control Release. 2019;295:93–101.
  • Lin C-Y, Li R-J, Huang C-Y, et al. Controlled release of liposome-encapsulated temozolomide for brain tumour treatment by convection-enhanced delivery. J Drug Target. 2018;26(4):325–332.
  • Lee CY. Strategies of temozolomide in future glioblastoma treatment. Onco Targets Ther. 2017;10:265–270.
  • Fan C-H, Liu W-L, Cao H, et al. O6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death Dis. 2013;4(10):e876.
  • von Baumgarten L, Brucker D, Tirniceru A, et al. Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin Cancer Res. 2011;17(19):6192–6205.
  • Im S-A, Gomez-Manzano C, Fueyo J, et al. Antiangiogenesis Treatment for Gliomas: Transfer of Antisense-Vascular Endothelial Growth Factor Inhibits Tumor Growth in Vivo. 7. n.d.
  • Folkins C, Man S, Xu P, et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 2007;67(8):3560–3564.
  • Kamoun WS, Ley CD, Farrar CT, et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol. 2009;27(15):2542–2552.
  • Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362(6423):841–844.
  • Preusser M, Lim M, Hafler DA, et al. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nature reviews. Neurology. 2015;11(9):504–514.
  • Hellmann MD, Ciuleanu T-E, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–2104.
  • Akiyama Y, Kimura Y, Enatsu R, et al. Advantages and disadvantages of combined chemotherapy with carmustine wafer and bevacizumab in patients with newly diagnosed glioblastoma: a single-institutional experience. World Neurosurg. 2018;113:e508–e514.
  • Dai B, Qi N, Li J, et al. Temozolomide combined with PD-1 Antibody therapy for mouse orthotopic glioma model. Biochem Biophys Res Commun. 2018;501(4):871–876.
  • Fleurence J, Bahri M, Fougeray S, et al. Impairing temozolomide resistance driven by glioma stem-like cells with adjuvant immunotherapy targeting O-acetyl GD2 ganglioside. Int J Cancer. 2020;146(2):424–438.
  • Abbruzzese C, Matteoni S, Signore M, et al. Drug repurposing for the treatment of glioblastoma multiforme. J Exp Clin Cancer Res. 2017;36(1):169.
  • Tan SK, Jermakowicz A, Mookhtiar AK, et al. Drug repositioning in glioblastoma: a pathway perspective. Front Pharmacol. 2018 Mar 16;9:218. PMID: 29615902; PMCID: PMC5864870.
  • Bahmad HF, Elajami MK, El Zarif T, et al. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev. 2020;39(1):127–148.
  • Daisy Precilla S, Kuduvalli SS, Thirugnanasambandhar Sivasubramanian A. Disentangling the therapeutic tactics in GBM: from bench to bedside and beyond. Cell Biol Int. 2021;45(1):18–53.
  • Siegelin MD, Schneider E, Westhoff MA, et al. Current state and future perspective of drug repurposing in malignant glioma. Seminars in cancer biology. 2021;68:92–104.
  • Hammoud H, Saker Z, Harati H, et al. Drug repurposing in medulloblastoma: challenges and recommendations. Curr Treat Options Oncol. 2020;22(1):6.
  • Peyvandipour A, Saberian N, Shafi A, et al. A novel computational approach for drug repurposing using systems biology. Bioinformatics. 2018;34(16):2817–2825.
  • Nowak-Sliwinska P, Scapozza L, Ruiz I Altaba A. Drug repurposing in oncology: compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochimica et biophysica acta. Rev Cancer. 2019;1871(2):434–454.
  • Hernandez JJ, Pryszlak M, Smith L, et al. Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front Oncol. 2017;7:273.
  • Würth R, Pattarozzi A, Gatti M, et al. Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle. 2013;12(1):145–156.
  • Seliger C, Meyer A-L, Renner K, et al. Metformin inhibits proliferation and migration of glioblastoma cells independently of TGF-β2. Cell Cycle. 2016;15(13):1755–1766.
  • Yu Z, Zhao G, Xie G, et al. Metformin and temozolomide act synergistically to inhibit growth of glioma cells and glioma stem cells in vitro and in vivo. Oncotarget. 2015;6(32):32930–32943.
  • Stockhammer F, Misch M, Koch A, et al. Continuous low-dose temozolomide and celecoxib in recurrent glioblastoma. J Neurooncol. 2010;100(3):407–415.
  • Reardon DA, Quinn JA, Vredenburgh J, et al. Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer. 2005;103(2):329–338.
  • Casaos J, Gorelick NL, Huq S, et al. The Use of Ribavirin as an Anticancer Therapeutic: will It Go Viral? Mol Cancer Ther. 2019;18(7):1185–1194.
  • Volpin F, Casaos J, Sesen J, et al. Use of an anti-viral drug, Ribavirin, as an anti-glioblastoma therapeutic. Oncogene. 2017;36(21):3037–3047.
  • Brennan CW, Verhaak RGW, McKenna A, TCGA Research Network, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–477.
  • Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–773.
  • Golub D, Iyengar N, Dogra S, et al. Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front Oncol. 2019;9:417.
  • Buser DP, Ritz M-F, Moes S, et al. Quantitative proteomics reveals reduction of endocytic machinery components in gliomas. EBioMedicine. 2019;46:32–41.
  • Dettling S, Stamova S, Warta R, et al. Identification of CRKII, CFL1, CNTN1, NME2, and TKT as novel and frequent T-Cell targets in human IDH-mutant glioma. Clin Cancer Res. 2018;24(12):2951–2962.
  • Heiland DH, Haaker G, Delev D, et al. Comprehensive analysis of PD-L1 expression in glioblastoma multiforme. Oncotarget. 2017;8(26):42214–42225.
  • Shraibman B, Barnea E, Kadosh DM, et al. Identification of tumor antigens among the HLA peptidomes of glioblastoma tumors and plasma. Mol Cell Proteomics. 2019a;18(6):1255–1268.
  • Shraibman B, Kadosh DM, Barnea E, et al. Human Leukocyte Antigen (HLA) peptides derived from tumor antigens induced by inhibition of DNA methylation for development of drug-facilitated immunotherapy. Mol Cell Proteomics. 2016;15(9):3058–3070.
  • Jain R, Atak A, Yeola A, et al. Proteomic level changes associated with S3I201 treated U87 glioma cells. J Proteomics. 2017;150:341–350.
  • Rapp C, Warta R, Stamova S, et al. Identification of T cell target antigens in glioblastoma stem-like cells using an integrated proteomics-based approach in patient specimens. Acta Neuropathol. 2017;134(2):297–316.
  • Graner MW, Alzate O, Dechkovskaia AM, et al. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J. 2009;23(5):1541–1557.
  • Cho D-Y, Yang W-K, Lee H-C, et al. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase ii clinical trial. World Neurosurg. 2012;77(5):736–744.
  • Land CA, Musich PR, Haydar D, et al. Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. J Transl Med. 2020 Nov 11;18(1):428. PMID: 33176788; PMCID: PMC7659102.
  • Daubon T, Hemadou A, Romero Garmendia I, et al. Glioblastoma immune landscape and the potential of new immunotherapies. Front Immunol. 2020;11:585616.
  • Upreti D, Bakhshinyan D, Bloemberg D, et al. Strategies to enhance the efficacy of T-Cell therapy for central nervous system tumors. Front Immunol. 2020 Nov 12;11:599253. PMID: 33281826; PMCID: PMC7689359.
  • Xie T, Chen X, Fang J, et al. Non-invasive monitoring of the kinetic infiltration and therapeutic efficacy of nanoparticle-labeled chimeric antigen receptor T cells in glioblastoma via 7.0-Tesla magnetic resonance imaging. Cytotherapy. 2020 Dec 14. DOI:https://doi.org/10.1016/j.jcyt.2020.10.006. S1465-3249(20)30931-2. Epub ahead of print. PMID: 33334686.
  • Wang D, Prager BC, Gimple RC, et al. CRISPR screening of CAR T Cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 2020 Dec 16;CD-20-1243. Epub ahead of print. PMID: 33328215. DOI:https://doi.org/10.1158/2159-8290.CD-20-1243.
  • Jacob F, Salinas RD, Zhang DY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020 Jan 9;180(1):188–204.e22. Epub 2019 Dec 26. PMID: 31883794; PMCID: PMC7556703.
  • Wang X, Zhao H-Y, Zhang F-C, et al. Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Invest. 2014;32(9):451–457.
  • Liau LM, Ashkan K, Tran DD, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142.
  • Wick W, van den Bent MJ. First results on the DCVax phase III trial: raising more questions than providing answers. Neuro Oncol. 2018;20(10):1283–1284.
  • McGirt MJ, Than KD, Weingart JD, et al. Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. J Neurosurg. 2009;110(3):583–588.
  • Patel TR. Nanocarrier-based therapies for CNS tumors. CNS Oncol. 2014;3(2):115–122.
  • Gao J-Q, Lv Q, Li L-M, et al. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials. 2013;34(22):5628–5639.
  • Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, et al. Brain targeted gold liposomes improve RNAi delivery for glioblastoma. Int J Nanomedicine. 2020;15:2809–2828.
  • Vangala V, Nimmu NV, Khalid S, et al. Combating glioblastoma by codelivering the small-molecule inhibitor of STAT3 and STAT3siRNA with α5β1 integrin receptor-selective liposomes. Mol Pharm. 2020;17(6):1859–1874.
  • Krishnamoorthy B, Karanam V, Chellan VR, et al. Polymersomes as an effective drug delivery system for glioma—A review. J Drug Target. 2014;22(6):469–477.
  • Fan Q, Liu Y, Cui G, et al. Brain delivery of Plk1 inhibitor via chimaeric polypeptide polymersomes for safe and superb treatment of orthotopic glioblastoma. J Control Release. 2020. DOI:https://doi.org/10.1016/j.jconrel.2020.10.043
  • Qin H, Jiang Y, Zhang J, et al. Oncoprotein inhibitor rigosertib loaded in ApoE-Targeted smart polymersomes reveals high safety and potency against human glioblastoma in mice. Mol Pharm. 2019;16(8):3711–3719.
  • Alphandéry E. Bio-Synthesized Iron oxide nanoparticles for cancer treatment. Int J Pharm. 2020 Aug 30;586:119472.
  • Alphandéry E. Applications of magnetotactic bacteria and magnetosome for cancer treatment: a review emphasizing on practical and mechanistic aspects. Drug Discov Today. 2020 Aug; 25(8):1444–1452.
  • Alphandéry E, Idbaih A, Adam C, et al. Biodegraded with reduced size and heating power maintain a persistent activity against intracranial U87-Luc Mouse GBM tumors. J Nanobiotechnol. 2019 Dec 23;17(1):126. DOI:https://doi.org/10.1186/s12951-019-0555-2.
  • Alphandéry E, Idbaih A, Adam C, et al. Development of non-pyrogenic magnetosome minerals coated with Poly-l-Lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia. Biomaterials. 2017 Oct;141:210–222.
  • Hamdous Y, Chebbi I, Mandawala C, et al. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field. J Nanobiotechnol. 2017;15(1). DOI:https://doi.org/10.1186/s12951-017-0293-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.