269
Views
2
CrossRef citations to date
0
Altmetric
Review

Advances in pharmacotherapy for neuroblastoma

ORCID Icon, , , , &
Pages 2383-2404 | Received 22 Mar 2021, Accepted 06 Jul 2021, Published online: 26 Jul 2021

References

  • Johnsen JI, Dyberg C, Wickström M. Neuroblastoma—A Neural Crest Derived Embryonal Malignancy. Front Mol Neurosci. 2019;12:9.
  • Ward E, DeSantis C, Robbins A, et al. Childhood and adolescent cancer statistics. CA Cancer J Clin. 2014;64(2):83–103.
  • Gatta G, Botta L, Rossi S, et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5-a population-based study. Lancet Oncol. 2014;15(1):35–47.
  • Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003 Mar;3(3):203–216.
  • Biological AN. Genetic Features of Neuroblastoma and Their Clinical Importance. Curr Pediatr Rev. 2018;14(2):73–90.
  • Yan P, Qi F, Bian L, et al. Comparison of Incidence and Outcomes of Neuroblastoma in Children, Adolescents, and Adults in the United States: a Surveillance, Epidemiology, and End Results (SEER) Program Population Study. Med Sci Monit. 2020 Nov 29;26:e927218.
  • Tas ML, Reedijk AMJ, Karim-Kos HE, et al. Neuroblastoma between 1990 and 2014 in the Netherlands: increased incidence and improved survival of high-risk neuroblastoma. Eur J Cancer. 2020;124:47–55.
  • Farouk FS, Viqar OA, Sheikh Z, et al. The association between race and survival among pediatric patients with neuroblastoma in the US between 1973 and 2015. Int J Environ Res Public Health. 2020;17(14):1–9.
  • Henderson TO, Bhatia S, Pinto N, et al. Racial and ethnic disparities in risk and survival in children with neuroblastoma: a Children’s Oncology Group study. J Clin Oncol. 2011;29(1):76–82.
  • Tsubota S, Kadomatsu K. Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res. 2018 May;372(2):211–221.
  • Schmidt ML, Lal A, Seeger RC, et al. Favorable Prognosis for Patients 12 to 18 Months of Age With Stage 4 Nonamplified MYCN Neuroblastoma: a Children’s Cancer Group Study. J Clin Oncol. 2005;23(27):6474–6480. .
  • Moroz V, MacHin D, Faldum A, et al. Changes over three decades in outcome and the prognostic influence of age-at-diagnosis in young patients with neuroblastoma: a report from the International Neuroblastoma Risk Group Project. Eur J Cancer. 2011;47(4):561–571. .
  • National Cancer I. Neuroblastoma Treatment PDQ. PDQ. 2012( Md):1–81.
  • Yu AL, Gilman AL, Ozkaynak MF, et al. Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma. N Engl J Med. 2010;363(14):1324–1334. .
  • Yu AA-O, Gilman AL, Ozkaynak MF, et al. Long-Term Follow-up of a Phase III Study of ch14.18 (Dinutuximab) + Cytokine Immunotherapy in Children with High-Risk Neuroblastoma: COG Study ANBL0032. Clin Cancer Res. 2021Apr 15;27(8):2179-2189.
  • Park JR, Scott JR, Stewart CF, et al. Pilot Induction Regimen Incorporating Pharmacokinetically Guided Topotecan for Treatment of Newly Diagnosed High-Risk Neuroblastoma: a Children’s Oncology Group Study. J Clin Oncol. 2011;29(33):4351–4357. .
  • Simon T, Längler A, Harnischmacher U, et al. Topotecan, cyclophosphamide, and etoposide (TCE) in the treatment of high-risk neuroblastoma. Results of a phase-II trial. Results of a phase-II trial. J Cancer Res Clin Oncol. 2007;133(9):653–661. .
  • Cheung NKV, Heller G. Chemotherapy dose intensity correlates strongly with response, median survival, and median progression-free survival in metastatic neuroblastoma. J Clin Oncol. 1991;9(6):1050–1058.
  • Yanik GA, Parisi MT, Shulkin BL, et al. Semiquantitative mIBG scoring as a prognostic indicator in patients with stage 4 neuroblastoma: a report from the children’s oncology group. J Nucl Med. 2013;54(4):541–548.
  • Yanik GA, Parisi MT, Naranjo A, et al. Validation of postinduction curie scores in high-risk neuroblastoma: a children’s oncology group and SIOPEN group report on SIOPEN/HR-NBL1. J Nucl Med. 2018;59(3):502–508.
  • Yanik G, Naranjo A, Parisi MT, et al. Impact of Post-Induction Curie Scores in High-Risk Neuroblastoma. Biol Blood Marrow Transplant. 2015;21(2):S107–S.
  • Berthold F, Boos J, Burdach S, et al. Myeloablative megatherapy with autologous stem-cell rescue versus oral maintenance chemotherapy as consolidation treatment in patients with high-risk neuroblastoma: a randomised controlled trial. Lancet Oncol. 2005;6(9):649–658.
  • Ladenstein R, Pötschger U, Hartman O, et al. 28 years of high-dose therapy and SCT for neuroblastoma in Europe: lessons from more than 4000 procedures. Bone Marrow Transplant. 2008;41((SUPPL):2.
  • Hartmann O, Valteau-Couanet D, Vassal G, et al. Prognostic factors in metastatic neuroblastoma in patients over 1 year of age treated with high-dose chemotherapy and stem cell transplantation: a multivariate analysis in 218 patients treated in a single institution. Bone Marrow Transplant. 1999;23(8):789–795.
  • Ladenstein RL, Poetschger U, Luksch R, et al. Busulphan-melphalan as a myeloablative therapy (MAT) for high-risk neuroblastoma: results from the HR-NBL1/SIOPEN trial. J Clin Oncol. 2011;29(18_suppl):2.
  • Park JR, Kreissman SG, London WB, et al. Effect of Tandem Autologous Stem Cell Transplant vs Single Transplant on Event-Free Survival in Patients With High-Risk Neuroblastoma: a Randomized Clinical Trial. JAMA. 2019;322(8):746–755.
  • Tesson M, Vasan R, Hock A, et al. An evaluation in vitro of the efficacy of nutlin-3 and topotecan in combination with 177Lu-DOTATATE for the treatment of neuroblastoma. Oncotarget. 2018;9(49):29082–29096.
  • Hallberg B, Palmer RH. The role of the ALK receptor in cancer biology. Ann Oncol. 2016 Sep;27 Suppl 3:iii4–iii15.
  • Osajima-Hakomori Y, Miyake I, Ohira M, et al. Biological role of anaplastic lymphoma kinase in neuroblastoma. Am J Pathol. 2005;167(1):213–222.
  • Okubo J, Takita J, Chen Y, et al. Aberrant activation of ALK kinase by a novel truncated form ALK protein in neuroblastoma. Oncogene. 2012;31(44):4667–4676.
  • Fransson S, Hansson M, Ruuth K, et al. Intragenic anaplastic lymphoma kinase (ALK) rearrangements: translocations as a novel mechanism of ALK activation in neuroblastoma tumors. Genes Chromosomes Cancer. 2015;54(2):99–109.
  • Carpenter EL, Mossé YP. Targeting ALK in neuroblastoma-preclinical and clinical advancements. Nat Rev Clin Oncol. 2012May 15;9(7):391–399.
  • Bresler SC, Weiser DA, Huwe PJ, et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell. 2014;26(5):682–694.
  • Schleiermacher G, Javanmardi N, Bernard V, et al. Emergence of new ALK mutations at relapse of neuroblastoma. J Clin Oncol. 2014;32(25):2727–2734.
  • Bellini A, Bernard V, Leroy Q, et al. Deep Sequencing Reveals Occurrence of Subclonal ALK Mutations in Neuroblastoma at Diagnosis. Clin Cancer Res. 2015;21(21):4913. LP-21.
  • Eleveld TF, Oldridge DA, Bernard V, et al. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet. 2015;47(8):864–871.
  • Mossé YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215):930–935.
  • Trigg RM, Turner SD. ALK in Neuroblastoma: biological and Therapeutic Implications. Cancers (Basel). 2018;10(4):113.
  • Kazandjian D, Blumenthal GM, Chen H-Y, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist. 2014;19(10):e5–e11.
  • Foster JH, Voss SD, Hall DC, et al. Activity of Crizotinib in Patients with ALK-aberrant Relapsed/Refractory Neuroblastoma: a Children’s Oncology Group Study (ADVL0912).Clin Cancer Res.2021 Jul 1;27(13):3543-3548.
  • Mossé YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–480.
  • Gambacorti-Passerini C, Orlov S, Zhang L, et al. Long-term effects of crizotinib in ALK-positive tumors (excluding NSCLC): a phase 1b open-label study. Am J Hematol. 2018;93(5):607–614.
  • Moore NF, Azarova AM, Bhatnagar N, et al. Molecular rationale for the use of PI3K/AKT/mTOR pathway inhibitors in combination with crizotinib in ALK-mutated neuroblastoma. Oncotarget. 2014;5(18):8737–8749.
  • Krytska K, Ryles HT, Sano R, et al. Crizotinib synergizes with chemotherapy in preclinical models of neuroblastoma. Clin Cancer Res. 2016;22(4):948–960.
  • Greengard E, Mosse YP, Liu X, et al. Safety, tolerability and pharmacokinetics of crizotinib in combination with cytotoxic chemotherapy for pediatric patients with refractory solid tumors or anaplastic large cell lymphoma (ALCL): a Children’s Oncology Group phase 1 consortium study (ADVL1212. Cancer Chemother Pharmacol. 2020;86(6):829–840.
  • Iobenguane I-131 or Crizotinib and Standard Therapy in Treating Younger Patients With Newly-Diagnosed High-Risk Neuroblastoma or Ganglioneuroblastoma.
  • Geoerger B, Schulte J, Zwaan CM, et al. Phase I study of ceritinib in pediatric patients (Pts) with malignancies harboring a genetic alteration in ALK (ALK+): safety, pharmacokinetic (PK), and efficacy results. J Clin Oncol. 2015;33(15_suppl):10005.
  • Wood AC, Krytska K, Ryles HT, et al. Dual ALK and CDK4/6 inhibition demonstrates synergy against neuroblastoma. Clin Cancer Res. 2017;23(11):2856–2868.
  • Next Generation Personalized Neuroblastoma Therapy (NEPENTHE).
  • Johnson TW, Richardson PF, Bailey S, et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros. J Med Chem. 2014;57(11):4720–4744.
  • Infarinato NR, Park JH, Krytska K, et al. The ALK/ROS1 inhibitor PF-06463922 overcomes primary resistance to crizotinib in ALK-driven neuroblastoma. Cancer Discov. 2016;6(1):96–107.
  • Guan J, Tucker ER, Wan H. et al. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN. Dis Model Mech. 2016;9(9):941–952.
  • NANT 2015-02: a Phase 1 Study of Lorlatinib (PF-06463922).
  • Li Q, Lin Q, Kim H, et al. The anti-protozoan drug nifurtimox preferentially inhibits clonogenic tumor cells under hypoxic conditions. Am J Cancer Res. 2017;7(5):1084–1095.
  • Kong E, Zhu J, Wu W, et al. Nifurtimox Inhibits the Progression of Neuroblastoma in vivo. J Cancer. 2019;10(10):2194–2204.
  • Saulnier Sholler GL, Brard L, Straub JA, et al. Nifurtimox induces apoptosis of neuroblastoma cells in vitro and in vivo. J Pediatr Hematol Oncol. 2009;31(3):187–193.
  • Cabanillas Stanchi KM, Bruchelt G, Handgretinger R, et al. Nifurtimox reduces N-Myc expression and aerobic glycolysis in neuroblastoma. Cancer Biol Ther. 2015;16(9):1353–1363.
  • Saulnier Sholler GL, Bergendahl GM, Brard L, et al. A phase 1 study of nifurtimox in patients with relapsed/refractory neuroblastoma. J Pediatr Hematol Oncol. 2011;33(1):25–30.
  • Study of Nifurtimox to Treat Refractory or Relapsed Neuroblastoma or Medulloblastoma.
  • Fricker LD. Proteasome inhibitor drugs. Annu Rev Pharmacol Toxicol. 2020;60(1):457–476.
  • Lasker K, Förster F, Bohn S, et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci U S A. 2012;109(5):1380–1387.
  • Blaney SM, Bernstein M, Neville K, et al. Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a children’s oncology group study (ADVL0015). J Clin Oncol. 2004;22(23):4752–4757.
  • Naumann I, Kappler R, Von Schweinitz D, et al. Bortezomib primes neuroblastoma cells for TRAIL-induced apoptosis by linking the death receptor to the mitochondrial pathway. Clin Cancer Res. 2011;17(10):3204–3218.
  • Loi M, Becherini P, Emionite L, et al. STRAIL coupled to liposomes improves its pharmacokinetic profile and overcomes neuroblastoma tumour resistance in combination with Bortezomib. J Control Release. 2014;192:157–166.
  • Hamner JB, Dickson PV, Sims TL, et al. Bortezomib inhibits angiogenesis and reduces tumor burden in a murine model of neuroblastoma. Surgery. 2007;142(2):185–191.
  • Nahreini P, Andreatta C, Hanson A, et al. Concomitant differentiation and partial proteasome inhibition trigger apoptosis in neuroblastoma cells. J Neurooncol. 2003;63(1):15–23.
  • Luo P, Lin M, Li L, et al. The proteasome inhibitor bortezomib enhances ATRA-induced differentiation of neuroblastoma cells via the JNK mitogen-activated protein kinase pathway. PLoS ONE. 2011;6:11.
  • Hämmerle B, Yañez Y, Palanca S, et al. Targeting Neuroblastoma Stem Cells with Retinoic Acid and Proteasome Inhibitor. PLoS ONE. 2013;8:10.
  • Pagnan G, Paolo DD, Carosio R, et al. The combined therapeutic effects of bortezomib and fenretinide on neuroblastoma cells involve endoplasmic reticulum stress response. Clin Cancer Res. 2009;15(4):1199–1209.
  • Sholler GS, Currier EA, Dutta A. et al. PCI-24781 (abexinostat), a novel histone deacetylase inhibitor, induces reactive oxygen species-dependent apoptosis and is synergistic with bortezomib in neuroblastoma. J Cancer Ther Res. 2013;2(1):21.
  • Du BY, Song W, Bai L, et al. Synergistic effects of combination treatment with bortezomib and doxorubicin in human neuroblastoma cell lines. Chemotherapy. 2012;58(1):44–51.
  • Rapino F, Naumann I, Fulda S. Bortezomib antagonizes microtubule-interfering drug-induced apoptosis by inhibiting G2/M transition and MCL-1 degradation. Cell Death Dis. 2013;4:11.
  • Mody R, Zhao L, Yanik GA, et al. I study of bortezomib in combination with irinotecan in patients with relapsed/refractory high-risk neuroblastoma. Pediatr Blood Cancer. 2017;64:11.
  • Carlisle AJ, Lyttle CA, Carlisle RY, et al. CXCR4 expression heterogeneity in neuroblastoma cells due to ligand-independent regulation. Mol Cancer. 2009 Dec 22;8:126.
  • Michaelis M, Fichtner I, Behrens D, et al. Anti-cancer effects of bortezomib against chemoresistant neuroblastoma cell lines in vitro and in vivo. Int J Oncol. 2006;28(2):439–446.
  • Guan S, Zhao Y, Lu J, et al. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget. 2016;7(46):75914–75925.
  • Lee SI, Jeong YJ, Yu AR, et al. Carfilzomib enhances cisplatin-induced apoptosis in SK-N-BE(2)-M17 human neuroblastoma cells. Sci Rep. 2019;9:1.
  • Valentijn LJ, Koster J, Zwijnenburg DA, et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet. 2015;47(12):1411–1414.
  • Chen J, Nelson C, Wong MKK, et al. Targeted therapy of TERT -rearranged neuroblastoma with BET bromodomain inhibitor and proteasome inhibitor combination therapy.Clin Cancer Res.2021 Mar 1;27(5):1438-1451.
  • Shang X, Burlingame SM, Okcu MF, et al. Aurora A is a negative prognostic factor and a new therapeutic target in human neuroblastoma. Mol Cancer Ther. 2009;8(8):2461–2469.
  • Zhang J, Li B, Yang Q, et al. Prognostic value of Aurora kinase A (AURKA) expression among solid tumor patients: a systematic review and meta-analysis. Jpn J Clin Oncol. 2015;45(7):629–636.
  • Romain C, Paul P, Kim KW, et al. Targeting Aurora kinase-A downregulates cell proliferation and angiogenesis in neuroblastoma. J Pediatr Surg. 2014;49(1):159–165.
  • Zhang H, Chen X, Liu B, et al. Effects of stable knockdown of Aurora kinase a on proliferation, migration, chromosomal instability, and expression of focal adhesion kinase and matrix metalloproteinase-2 in HEp-2 cells. Mol Cell Biochem. 2011;357(1–2):95–106.
  • Faisal A, Vaughan L, Bavetsias V, et al. The aurora kinase inhibitor CCT137690 downregulates MYCN and sensitizes MYCN-amplified neuroblastoma in Vivo. Mol Cancer Ther. 2011;10(11):2115–2123.
  • Carol H, Boehm I, Reynolds CP, et al. Efficacy and pharmacokinetic/pharmacodynamic evaluation of the Aurora kinase A inhibitor MLN8237 against preclinical models of pediatric cancer. Cancer Chemother Pharmacol. 2011;68(5):1291–1304.
  • Niu H, Manfredi M, Ecsedy JA Scientific rationale supporting the clinical development strategy for the investigational Aurora A kinase inhibitor alisertib in cancer. Frontiers Media S.A.; 2015.
  • Richards MW, Burgess SG, Poon E, et al. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc Natl Acad Sci U S A. 2016;113(48):13726–13731.
  • Mossé YP, Lipsitz E, Fox E, et al. Pediatric phase I trial and pharmacokinetic study of MLN8237, an investigational oral selective small-molecule inhibitor of Aurora kinase A: a children’s oncology group phase I consortium study. Clin Cancer Res. 2012;18(21):6058–6064.
  • Mosse YP, Fox E, Teachey DT, et al. A phase II study of alisertib in children with recurrent/refractory solid tumors or leukemia: children’s Oncology Group Phase I and pilot Consortium (ADVL0921). Clin Cancer Res. 2019;25(11):3229–3238.
  • DuBois SG, Marachelian A, Fox E, et al. Phase I study of the aurora A kinase inhibitor alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma: a nant (new approaches to neuroblastoma therapy) trial. J Clin Oncol. 2016;34(12):1368–1375.
  • DuBois SG, Mosse YP, Fox E, et al. Phase II Trial of Alisertib in Combination with Irinotecan and Temozolomide for Patients with Relapsed or Refractory Neuroblastoma. ( 1557-3265 (Electronic)).
  • Zheng C, Shen R, Li K, et al. Epidermal growth factor receptor is overexpressed in neuroblastoma tissues and cells. Acta Biochim Biophys Sin (Shanghai). 2016;48(8):762–767.
  • Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003;21(14):2787–2799.
  • Michaelis M, Bliss J, Arnold SC, et al. Cisplatin-resistant neuroblastoma cells express enhanced levels of epidermal growth factor receptor (EGFR) and are sensitive to treatment with EGFR-specific toxins. Clin Cancer Res. 2008;14(20):6531–6537.
  • Daw NC, Furman WL, Stewart CF, et al. Phase I and pharmacokinetic study of gefitinib in children with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol. 2005;23(25):6172–6180.
  • Brennan RC, Furman W, Mao S, et al. Phase I dose escalation and pharmacokinetic study of oral gefitinib and irinotecan in children with refractory solid tumors. Cancer Chemother Pharmacol. 2014;74(6):1191–1198.
  • Furman WL, McGregor LM, McCarville MB, et al. A single-arm pilot phase II study of gefitinib and irinotecan in children with newly diagnosed high-risk neuroblastoma. Invest New Drugs. 2012;30(4):1660–1670.
  • Jakacki RI, Hamilton M, Gilbertson RJ, et al. Pediatric phase I and pharmacokinetic study of erlotinib followed by the combination of erlotinib and temozolomide: a children’s oncology group phase I consortium study. J Clin Oncol. 2008;26(30):4921–4927.
  • A Phase II Study of Pertuzumab and Erlotinib for Metastatic or Unresectable Neuroendocrine Tumors.
  • Phimmachanh M, Han JZR, YEI O, et al. Histone Deacetylases and Histone Deacetylase Inhibitors in Neuroblastoma. Frontiers Media S.A.; 2020.
  • Stockhausen M-T, Sjölund J, Manetopoulos C, et al. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br J Cancer. 2005;92(4):751–759.
  • Fang E, Wang J, Hong M, et al. Valproic acid suppresses Warburg effect and tumor progression in neuroblastoma. Biochem Biophys Res Commun. 2019;508(1):9–16.
  • Dedoni S, Marras L, Olianas MC, et al. Downregulation of TrkB expression and signaling by valproic acid and other histone deacetylase inhibitors. J Pharmacol Exp Ther. 2019;370(3):490–503.
  • Chen Y, Tsai Y-H, Tseng S-H. Combined valproic acid and celecoxib treatment induced synergistic cytotoxicity and apoptosis in neuroblastoma cells. Anticancer Res. 2011;31(6):2231–2239.
  • Liu T, Liu PY, Tee AEL, et al. Over-expression of clusterin is a resistance factor to the anti-cancer effect of histone deacetylase inhibitors. Eur J Cancer. 2009;45(10):1846–1854. .
  • Yang Q, Tian Y, Liu S, et al. Thrombospondin-1 peptide ABT-510 combined with valproic acid is an effective antiangiogenesis strategy in neuroblastoma. Cancer Res. 2007;67(4):1716–1724. .
  • Temsirolimus and Valproic Acid in Treating Young Patients With Relapsed Neuroblastoma, Bone Sarcoma, or Soft Tissue Sarcoma - Full Text View - ClinicalTrials.gov.
  • Traore F, Togo B, Pasquier E, et al. Preliminary evaluation of children treated with metronomic chemotherapy and valproic acid in a low-income country: metro-Mali-02. Indian J Cancer. 2013;50(3):250–253.
  • Bubna AK, Overview V-A. Indian J Dermatol. 2015;60(4):419.
  • Mühlethaler-Mottet A, Meier R, Flahaut M, et al. Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells. Mol Cancer. 2008;7(1):55. .
  • Zheng X, Naiditch J, Czurylo M, et al. Differential effect of long-term drug selection with doxorubicin and vorinostat on neuroblastoma cells with cancer stem cell characteristics. Cell Death Dis. 2013;4(7):e740–e. .
  • Fouladi M, Park JR, Stewart CF, et al. Pediatric Phase I Trial and Pharmacokinetic Study of Vorinostat: a Children’s Oncology Group Phase I Consortium Report. J Clin Oncol. 2010;28(22):3623–3629. .
  • Pinto N, DuBois SG, Marachelian A, et al. Phase I study of vorinostat in combination with isotretinoin in patients with refractory/recurrent neuroblastoma: a new approaches to Neuroblastoma Therapy (NANT) trial. Pediatr Blood Cancer. 2018;65(7):7. .
  • Johnsen JI, Segerström L, Orrego A, et al. Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene. 2008;27(20):2910–2922. .
  • Segerström L, Baryawno N, Sveinbjörnsson B, et al. Effects of small molecule inhibitors of PI3K/Akt/mTOR signaling on neuroblastoma growth in vitro and in vivo. Int J Cancer. 2011;129(12):2958–2965. .
  • Marimpietri D, Nico B, Vacca A, et al. Synergistic inhibition of human neuroblastoma-related angiogenesis by vinblastine and rapamycin. Oncogene. 2005;24(45):6785–6795. .
  • Marimpietri D, Brignole C, Nico B, et al. Combined therapeutic effects of vinblastine and rapamycin on human neuroblastoma growth, apoptosis, and angiogenesis. Clin Cancer Res. 2007;13(13):3977–3988. .
  • Levy AG, Zage PE, Akers LJ, et al. The combination of the novel glycolysis inhibitor 3-BrOP and rapamycin is effective against neuroblastoma. Invest New Drugs. 2012;30(1):191–199. .
  • Song X, Wang L, Wang T, et al. Synergistic Targeting of CHK1 and mTOR in MYC-driven tumors. Carcinogenesis. 2021 Apr 17;42(3):448-460.
  • Dong Y, Gong W, Hua Z, et al. Combination of Rapamycin and MK-2206 Induced Cell Death via Autophagy and Necroptosis in MYCN-Amplified Neuroblastoma Cell Lines. Front Pharmacol. 2020;11:31.
  • Morgenstern DA, Marzouki M, Bartels U, et al. Phase I study of vinblastine and sirolimus in pediatric patients with recurrent or refractory solid tumors. Pediatr Blood Cancer. 2014;61(1):128–133. .
  • Qayed M, Cash T, Tighiouart M, et al. A phase I study of sirolimus in combination with metronomic therapy (CHOAnome) in children with recurrent or refractory solid and brain tumors. Pediatr Blood Cancer. 2020;67(4):4. .
  • Nonnenmacher L, Westhoff M-A, Fulda S, et al. RIST: a potent new combination therapy for glioblastoma. Int J Cancer. 2015;136(4):E173–E87. .
  • Multimodal Molecular Targeted Therapy to Treat Relapsed or Refractory High-risk Neuroblastoma - Full Text View - ClinicalTrials.gov.
  • Spunt SL, Grupp SA, Vik TA, et al. Phase I study of temsirolimus in pediatric patients with recurrent/refractory solid tumors. J Clin Oncol. 2011;29(21):2933–2940. .
  • Geoerger B, Kieran MW, Grupp S, et al. Phase II trial of temsirolimus in children with high-grade glioma, neuroblastoma and rhabdomyosarcoma. Eur J Cancer. 2012;48(2):253–262. .
  • Bagatell R, Norris R, Ingle AM, et al. Phase 1 trial of temsirolimus in combination with irinotecan and temozolomide in children, adolescents and young adults with relapsed or refractory solid tumors: a children’s oncology group study. Pediatr Blood Cancer. 2014;61(5):833–839. .
  • Mody R, Naranjo A, Van Ryn C, et al. Irinotecan–temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an open-label, randomised, phase 2 trial. Lancet Oncol. 2017;18(7):946–957. .
  • Becher OJ, Gilheeney SW, Khakoo Y, et al. A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatr Blood Cancer. 2017;64(7):7. .
  • Zhao Q, Tran H, Dimitrov DS, et al. A dual-specific anti-IGF-1/IGF-2 human monoclonal antibody alone and in combination with temsirolimus for therapy of neuroblastoma. Int J Cancer. 2015;137(9):2243–2252.
  • McGuire TR, Coulter DW, Bai D, et al. Effects of novel pyrrolomycin MP1 in MYCN amplified chemoresistant neuroblastoma cell lines alone and combined with temsirolimus. BMC Cancer. 2019;19(1):1. .
  • van Blitterswijk WJ, Verheij M. Anticancer mechanisms and clinical application of alkylphospholipids. Biochim Biophys Acta. 2013;1831(3):663–674.
  • Gills JJ, Dennis PA. Perifosine: update on a novel Akt inhibitor. Curr Oncol Rep. 2009;11(2):102–110.
  • Li Z, Tan F, Liewehr DJ, et al. In Vitro and In Vivo Inhibition of Neuroblastoma Tumor Cell Growth by AKT Inhibitor Perifosine. JNCI Journal of the National Cancer Institute. 2010;102(11):758–770.
  • Becher OJ, Millard NE, Modak S, et al. A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PloS One. 2017;12(6):e0178593–e. .
  • Kushner BH, Cheung N-KV, Modak S, et al. A phase I/Ib trial targeting the Pi3k/Akt pathway using perifosine: long-term progression-free survival of patients with resistant neuroblastoma. Int J Cancer. 2017;140(2):480–484. .
  • Opel D, Poremba C, Simon T, et al. Activation of Akt Predicts Poor Outcome in Neuroblastoma. Cancer Res. 2007;67(2):735.
  • Kostopoulou ON, Holzhauser S, Lange BKA, et al. Analyses of FGFR3 and PIK3CA mutations in neuroblastomas and the effects of the corresponding inhibitors on neuroblastoma cell lines. Int J Oncol. 2019;55(6):1372–1384.
  • Holzhauser S, Lukoseviciute M, Papachristofi C, et al. Effects of PI3K and FGFR inhibitors alone and in combination, and with/without cytostatics in childhood neuroblastoma cell lines. Int J Oncol. 2021;58(2):211–225. .
  • Erdreich-Epstein A, Singh AR, Joshi S, et al. Association of high microvessel α v β 3 and low PTEN with poor outcome in stage 3 neuroblastoma: rationale for using first in class dual PI3K/BRD4 inhibitor, SF1126. Oncotarget. 2016;8(No):32.
  • Fletcher S, Prochownik EV. Small-molecule inhibitors of the Myc oncoprotein. Biochim Biophys Acta Gene Regul Mech. 2015;1849(5):525–543.
  • Puissant A, Frumm SM, Alexe G, et al. Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition. Cancer Discov. 2013;3(3):308. .
  • Peirce SK, Findley HW, Prince C, et al. The PI-3 kinase-Akt-MDM2-survivin signaling axis in high-risk neuroblastoma: a target for PI-3 kinase inhibitor intervention. Cancer Chemother Pharmacol. 2011;68(2):325–335.
  • NCT02337309. [cited 2015 Jan 13]. Available from: https://clinicaltrials.gov/ct2/show/NCT02337309.
  • Wieland DM, Wu J, Brown LE, et al. Radiolabeled adrenergi neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med. 1980;21(4):349–353.
  • Jacobson AF, Deng H, Lombard J, et al. 123I-Meta-Iodobenzylguanidine Scintigraphy for the Detection of Neuroblastoma and Pheochromocytoma: results of a Meta-Analysis. J Clin Endocrinol Metab. 2010;95(6):2596–2606.
  • Xia J, Zhang H, Hu Q, et al. Comparison of diagnosing and staging accuracy of PET (CT) and MIBG on patients with neuroblastoma: systemic review and meta-analysis. Curr Med Sci. 2017;37(5):649–660. .
  • Sharp SE, Trout AT, Weiss BD, et al. MIBG in Neuroblastoma Diagnostic Imaging and Therapy. RadioGraphics. 2016;36(1):258–278.
  • Yanik GA, Villablanca JG, Maris JM, et al. 131I-Metaiodobenzylguanidine with Intensive Chemotherapy and Autologous Stem Cell Transplantation for High-Risk Neuroblastoma. A New Approaches to Neuroblastoma Therapy (NANT) Phase II Study. Biol Blood Marrow Transplant. 2015;21(4):673–681.
  • de Kraker J, Hoefnagel KA, Verschuur AC, et al. Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur J Cancer. 2008;44(4):551–556.
  • Bleeker G, Schoot RA, Caron HN, et al. Toxicity of upfront 131I-metaiodobenzylguanidine (131I-MIBG) therapy in newly diagnosed neuroblastoma patients: a retrospective analysis. Eur J Nucl Med Mol Imaging. 2013;40(11):1711–1717. .
  • Kraal KCJM, Tytgat GAM, van Eck-Smit BLF, et al. Upfront treatment of high-risk neuroblastoma with a combination of 131 I-MIBG and topotecan. Pediatr Blood Cancer. 2015;62(11):1886–1891.
  • NCT03126916. [cited 2017 Apr 25].  Available from: https://clinicaltrials.gov/ct2/show/NCT03126916.
  • Hogarty MD, Norris MD, Davis K, et al. ODC1 Is a Critical Determinant of MYCN Oncogenesis and a Therapeutic Target in Neuroblastoma. Cancer Res. 2008;68(23):9735–9745. .
  • Lozier AM, Rich ME, Grawe AP, et al. Targeting ornithine decarboxylase reverses the LIN28/Let-7 axis and inhibits glycolytic metabolism in neuroblastoma. Oncotarget. 2015;6(1):196–206. .
  • Koomoa D-LT, Yco LP, Borsics T, et al. Ornithine Decarboxylase Inhibition by α-Difluoromethylornithine Activates Opposing Signaling Pathways via Phosphorylation of Both Akt/Protein Kinase B and p27 Kip1 in Neuroblastoma. Cancer Res. 2008;68(23):9825–9831.
  • Koomoa DANA-LYNNT, Geerts D, Lange I, et al. DFMO/eflornithine inhibits migration and invasion downstream of MYCN and involves p27Kip1 activity in neuroblastoma. Int J Oncol. 2013;42(4):1219–1228. .
  • Sholler GLS, Gerner EW, Bergendahl G, et al. editors. A phase I trial of DFMO targeting polyamine addiction in patients with relapsed/refractory neuroblastoma. PLoS One. 2015 May 27;10(5):e0127246.
  • GLS S, Ferguson W, Bergendahl G, et al. Maintenance DFMO Increases Survival in High Risk Neuroblastoma. Sci Rep. 2018;8(1):1. .
  • Schultz CR, Geerts D, Mooney M, et al. Synergistic drug combination GC7/DFMO suppresses hypusine/spermidine-dependent eIF5A activation and induces apoptotic cell death in neuroblastoma. Biochem J. 2018;475(2):531–545.
  • Samal K, Zhao P, Kendzicky A, et al. AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport. Int J Cancer. 2013;133(6):1323–1333. .
  • Bull VH, Rajalingam K, Thiede B, editors. Sorafenib-induced mitochondrial complex I inactivation and cell death in human neuroblastoma cells. J Proteome Res. 2012 Mar 2;11(3):1609-20.
  • Yang F, Jove V, Buettner R, et al. Sorafenib inhibits endogenous and IL-6/S1P induced JAK2-STAT3 signaling in human neuroblastoma, associated with growth suppression and apoptosis. Cancer Biol Ther. 2012;13(7):534–541. .
  • Kakodkar NC, Peddinti RR, Tian Y, et al. Sorafenib inhibits neuroblastoma cell proliferation and signaling, blocks angiogenesis, and impairs tumor growth. Pediatr Blood Cancer. 2012;59(4):642–647. .
  • Navid F, Baker SD, McCarville MB, et al. Phase I and clinical pharmacology study of bevacizumab, sorafenib, and low-dose cyclophosphamide in children and young adults with refractory/recurrent solid tumors. Clin Cancer Res off J Am Assoc Cancer Res. 2013;19(1):236–246. .
  • Reed DR, Mascarenhas L, Manning K, Reed DR, Mascarenhas L, Manning K, Hale GA, Goldberg J, Gill J, et al. Pediatric phase I trial of oral sorafenib and topotecan in refractory or recurrent pediatric solid malignancies. Cancer Med. 2016;5(2):294–303. .
  • Sorafenib and Cyclophosphamide/Topotecan in Patients With Relapsed and Refractory Neuroblastoma - Full Text View - ClinicalTrials.gov.
  • Matthay KK, Atkinson JB, Stram DO, et al. Patterns of relapse after autologous purged bone marrow transplantation for neuroblastoma: a Childrens Cancer Group pilot study. J Clin Oncol. 1993;11(11):2226–2233.
  • Jin Z, Lu Y, Wu Y, et al. Development of differentiation modulators and targeted agents for treating neuroblastoma. Eur J Med Chem. 2020;207:112818.
  • Brodeur GM, Bagatell R. Mechanisms of neuroblastoma regression. Nat Rev Clin Oncol. 2014;11(12):704–713.
  • Lotem J, Sachs L. In Vivo Control of Differentiation of Myeloid Leukemic Cells by Recombinant Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin 3. Blood. 1988;71(2):375–382.
  • de Thé H. Differentiation therapy revisited. Nat Rev Cancer. 2018;18(2):117–127.
  • Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci. 2015;72(8):1559–1576.
  • Uray IP, Dmitrovsky E, Brown PH. Retinoids and rexinoids in cancer prevention: from laboratory to clinic. Semin Oncol. 2016;43(1):49–64.
  • Khalil S, Bardawil T, Stephan C, et al. Retinoids: a journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. J Dermatological Treat. 2017;28(8):684–696. .
  • Reynolds CP, Matthay KK, Villablanca JG, et al. Retinoid therapy of high-risk neuroblastoma. Cancer Lett. 2003;197(1–2):185–192.
  • Reynolds CP. Differentiating agents in pediatric malignancies: retinoids in neuroblastoma. Curr Oncol Rep. 2000;2(6):511–518.
  • Matthay KK, Villablanca JG, Seeger RC, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med. 1999;341(16):1165–1173.
  • Matthay KK, Reynolds CP, Seeger RC, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol. 2009;27(7):1007–1013.
  • Masetti R, Biagi C, Zama D, et al. Retinoids in pediatric onco-hematology: the model of acute promyelocytic leukemia and neuroblastoma. Adv Ther. 2012;29(9):747–762.
  • Reynolds CP, Wang Y, Melton LJ, et al. Retinoic-acid-resistant neuroblastoma cell lines show altered MYC regulation and high sensitivity to fenretinide. Med Pediatr Oncol. 2000;35(6):597–602.
  • Delia D, Aiello A, Lombardi L, et al. N-(4-hydroxyphenyl)retinamide induces apoptosis of malignant hemopoietic cell lines including those unresponsive to retinoic acid. Cancer Res. 1993;53(24):6036–6041.
  • Villablanca JG, Krailo MD, Ames MM, et al. Phase I trial of oral fenretinide in children with high-risk solid tumors: a report from the Children’s Oncology Group (CCG 09709). J Clin Oncol. 2006;24(21):3423–3430.
  • George RE, Diller L, Bernstein ML. Pharmacotherapy of neuroblastoma. Expert Opin Pharmacother. 2010;11(9):1467–1478.
  • Maurer BJ, Kang MH, Villablanca JG, et al. Phase I trial of fenretinide delivered orally in a novel organized lipid complex in patients with relapsed/refractory neuroblastoma: a report from the New Approaches to Neuroblastoma Therapy (NANT) consortium. Pediatr Blood Cancer. 2013;60(11):1801–1808.
  • Song MM, Makena MR, Hindle A, et al. Cytotoxicity and molecular activity of fenretinide and metabolites in T-cell lymphoid malignancy, neuroblastoma, and ovarian cancer cell lines in physiological hypoxia. Anticancer Drugs. 2019;30(2):117–127.
  • Marayati R, Williams AP, Bownes LV, et al. Novel retinoic acid derivative induces differentiation and growth arrest in neuroblastoma. J Pediatr Surg. 2020;55(6):1072–1080.
  • Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125(9):3335–3337.
  • Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–421.
  • Sait S. Anti-GD2 MS. immunotherapy for neuroblastoma. Expert Rev Anticancer Ther. 2017;17(10):889–904.
  • Morandi F, Sabatini F, Podestà M, et al. Immunotherapeutic Strategies for Neuroblastoma: present, Past and Future. Vaccines (Basel). 2021;9:1.
  • Yanagisawa M, Yoshimura S, Yu RK. Expression of GD2 and GD3 gangliosides in human embryonic neural stem cells. ASN Neuro. 2011;3:2.
  • Lammie G, Cheung N, Gerald W, et al. Ganglioside gd(2) expression in the human nervous-system and in neuroblastomas - an immunohistochemical study. Int J Oncol. 1993;3(5):909–915.
  • Wondimu A, Liu Y, Su Y, et al. Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells. Cancer Res. 2014;74(19):5449–5457.
  • Yang RK, Kalogriopoulos NA, Rakhmilevich AL, et al. Intratumoral treatment of smaller mouse neuroblastoma tumors with a recombinant protein consisting of IL-2 linked to the hu14.18 antibody increases intratumoral CD8+ T and NK cells and improves survival. Cancer Immunol Immunother. 2013;62(8):1303–1313.
  • Yang RK, Kalogriopoulos NA, Rakhmilevich AL, et al. Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor effects that involve both activated T and NK cells as well as enhanced IC retention. J Iimmunol. 2012;189(5):2656–2664. Baltimore, Md: 1950.
  • Neal ZC, Sondel PM, Bates MK, et al. Flt3-L gene therapy enhances immunocytokine-mediated antitumor effects and induces long-term memory. Cancer Immunol Immunother. 2007;56(11):1765–1774.
  • Schulte JH, Schulte S, Heukamp LC, et al. Targeted Therapy for Neuroblastoma: ALK Inhibitors. Klin Padiatrie. 2013;225(6):303–308.
  • Li N, Gao W, Zhang YF, et al. Glypicans as Cancer Therapeutic Targets. Trends Cancer. 2018;4(11):741–754.
  • Bosse KR, Raman P, Zhu Z, et al. Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. Cancer Cell. 2017;32(3):295–309.e12.
  • Kendsersky NM, Lindsay J, Kolb EA, et al. The B7-H3-Targeting Antibody-Drug Conjugate m276-SL-PBD Is Potently Effective Against Pediatric Cancer Preclinical Solid Tumor Models. Clin Cancer Res. 2021 May 15;27(10):2938-2946.
  • Sano R, Krytska K, Larmour CE, et al. An antibody-drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma. Sci Transl Med. 2019;11:483.
  • Federico SM, McCarville MB, Shulkin BL, et al. A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody (hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with Recurrent/Refractory Neuroblastoma. Clin Cancer Res off J Am Assoc Cancer Res. 2017;23(21):6441–6449.
  • Talleur AC, Triplett BM, Federico S, et al. Consolidation Therapy for Newly Diagnosed Pediatric Patients with High-Risk Neuroblastoma Using Busulfan/ Melphalan,Autologous Hematopoietic Cell Transplantation, Anti-GD2 Antibody, Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-2, and Hap. Biol Blood Marrow Transplant. 2017;23(11):1910–1917.
  • Shusterman S, Naranjo A, Van Ryn C, et al. Antitumor Activity and Tolerability of hu14.18-IL2 with GMCSF and Isotretinoin in Recurrent or Refractory Neuroblastoma: a Children’s Oncology Group Phase II Study. Clin Cancer Res off J Am Assoc Cancer Res. 2019;25(20):6044–6051.
  • Ceylan K, Jahns LJ, Lode BN, et al. Inflammatory response and treatment tolerance of long-term infusion of the anti-GD(2) antibody ch14.18/CHO in combination with interleukin-2 in patients with high-risk neuroblastoma. Pediatr Blood Cancer. 2018;65(6):e26967–e.
  • Kushner BH, Cheung IY, Modak S, et al. Humanized 3F8 Anti-GD2 Monoclonal Antibody Dosing With Granulocyte-Macrophage Colony-Stimulating Factor in Patients With Resistant Neuroblastoma: a Phase 1 Clinical Trial. JAMA Oncol. 2018;4(12):1729–1735.
  • Davis KL, Fox E, Merchant MS, et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2020;21(4):541–550.
  • Geoerger B, Kang HJ, Yalon-Oren M, et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): interim analysis of an open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2020;21(1):121–133.
  • Furman WL, Federico SM, McCarville MB, et al. A Phase II Trial of Hu14.18K322A in Combination with Induction Chemotherapy in Children with Newly Diagnosed High-Risk Neuroblastoma. Clin Cancer Res. 2019;25(21):6320–6328.
  • Norris RE, Fox E, Reid JM, et al. Phase 1 trial of ontuxizumab (MORAb-004) in children with relapsed or refractory solid tumors: a report from the Children’s Oncology Group Phase 1 Pilot Consortium (ADVL1213). Pediatr Blood Cancer. 2018;65(5):e26944.
  • Modak S, Kushner BH, Basu E, et al. Combination of bevacizumab, irinotecan, and temozolomide for refractory or relapsed neuroblastoma: results of a phase II study. Pediatr Blood Cancer. 2017;64:8.
  • Osenga KL, Hank JA, Albertini MR, et al. A phase I clinical trial of the hu14.18-IL2 (EMD 273063) as a treatment for children with refractory or recurrent neuroblastoma and melanoma: a study of the Children’s Oncology Group. Clin Cancer Res. 2006;12(6):1750–1759.
  • Hara J, Nitani C, Kawamoto H, et al. A Phase I/IIa Study of Antidisialoganglioside Antibody Dinutuximab in Japanese Patients With Neuroblastoma. J Pediatr Hematol Oncol. 2021;43(3):e358–e64.
  • Cicek F, Troschke-Meurer S, Ceylan K, et al. Impact of IL-2 on Treatment Tolerance in Patients With High-Risk Neuroblastoma Treated With Dinutuximab Beta-Based Immunotherapy. Front Pediatr. 2020;8:582820.
  • Ladenstein R, Pötschger U, Valteau-Couanet D, et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(12):1617–1629.
  • Nguyen R, Moustaki A, Norrie JL, et al. Interleukin-15 Enhances Anti-GD2 Antibody-Mediated Cytotoxicity in an Orthotopic PDX Model of Neuroblastoma. Clin Cancer Res. 2019;25(24):7554–7564.
  • Louis CU, Brenner MK. Cellular immunotherapy for neuroblastoma: a review of current vaccine and adoptive T cell therapeutics. Curr Pharm Des. 2009;15(4):424–429.
  • de Bruijn S, Anguille S, Verlooy J, et al. Dendritic Cell-Based and Other Vaccination Strategies for Pediatric Cancer. Cancers (Basel). 2019;11:9.
  • Verneris MR, Wagner JE. Recent developments in cell-based immune therapy for neuroblastoma. In: United States. 2007 Jun;2(2):134–139.
  • Shilyansky J, Jacobs P, Doffek K, et al. Induction of cytolytic T lymphocytes against pediatric solid tumors in vitro using autologous dendritic cells pulsed with necrotic primary tumor. J Pediatr Surg. 2007;42(1): 54–61. discussion.
  • Pawelec G. Tumour escape: antitumour effectors too much of a good thing? Cancer Immunol Immunother. 2004;53(3):262–274.
  • Zhou G, Lu Z, McCadden JD, et al. Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J Exp Med. 2004;200(12):1581–1592.
  • Nemunaitis J. Vaccines in cancer: GVAX, a GM-CSF gene vaccine. Expert Rev Vaccines. 2005;4(3):259–274.
  • Caruso DA, Orme LM, Amor GM, et al. Results of a Phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer. 2005;103(6):1280–1291.
  • Russell HV, Strother D, Mei Z, et al. Phase I trial of vaccination with autologous neuroblastoma tumor cells genetically modified to secrete IL-2 and lymphotactin. J Immunother. 2007;30(2):227–233. Hagerstown, Md: 1997.
  • Russell HV, Strother D, Mei Z, et al. A phase 1/2 study of autologous neuroblastoma tumor cells genetically modified to secrete IL-2 in patients with high-risk neuroblastoma. J Immunother. 2008;31(9):812–819. Hagerstown, Md: 1997.
  • Kushner BH, Cheung IY, Modak S, et al. Phase I trial of a bivalent gangliosides vaccine in combination with β-glucan for high-risk neuroblastoma in second or later remission. Clin Cancer Res off J Am Assoc Cancer Res. 2014;20(5):1375–1382.
  • Krishnadas DK, Shusterman S, Bai F, et al. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunol Immunother. 2015;64(10):1251–1260.
  • Cacciavillano W, Sampor C, Venier C, et al. A Phase I Study of the Anti-Idiotype Vaccine Racotumomab in Neuroblastoma and Other Pediatric Refractory Malignancies. Pediatr Blood Cancer. 2015;62(12):2120–2124.
  • Camisaschi C, Renne SL, Beretta V, et al. Immune landscape and in vivo immunogenicity of NY-ESO-1 tumor antigen in advanced neuroblastoma patients. BMC Cancer. 2018;18(1):983.
  • Tanaka M, Tashiro H, Omer B, et al. Vaccination Targeting Native Receptors to Enhance the Function and Proliferation of Chimeric Antigen Receptor (CAR)-Modified T Cells. Clin Cancer Res off J Am Assoc Cancer Res. 2017;23(14):3499–3509.
  • Stegantseva MV, Shinkevich VA, Tumar EM, et al. Conjugation of new DNA vaccine with polyethylenimine induces cellular immune response and tumor regression in neuroblastoma mouse model. Exp Oncol. 2020;42(2):120–125.
  • Marx M, Zumpe M, Troschke-Meurer S, et al. Co-expression of IL-15 enhances anti-neuroblastoma effectivity of a tyrosine hydroxylase-directed DNA vaccination in mice. PloS One. 2018;13(11):e0207320–e.
  • Fest S, Huebener N, Bleeke M, et al. Survivin minigene DNA vaccination is effective against neuroblastoma. Int J Cancer. 2009;125(1):104–114.
  • Berger E, Soldati R, Huebener N, et al. Salmonella SL7207 application is the most effective DNA vaccine delivery method for successful tumor eradication in a murine model for neuroblastoma. Cancer Lett. 2013;331(2):167–173.
  • Kushner BH, Cheung N-KV. Induction for high-risk neuroblastoma. Pediatr Blood Cancer. 2007;49(3):221–223.
  • Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–398.
  • Richards RM, Sotillo E, Majzner RG. CAR T Cell Therapy for Neuroblastoma. Front Immunol. 2018;9:2380.
  • Richman SA, Nunez-Cruz S, Moghimi B, et al. High-Affinity GD2-Specific CAR T Cells Induce Fatal Encephalitis in a Preclinical Neuroblastoma Model. Cancer Immunol Res. 2018;6(1):36–46.
  • Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6056.
  • Yang L, Ma X, Liu Y-C, et al. Chimeric antigen receptor 4SCAR-GD2-modified T cells targeting high-risk and recurrent neuroblastoma: a phase II multi-center trial in China. Blood. 2017;130(Supplement 1):3335.
  • Straathof K, Flutter B, Wallace R, et al. Abstract CT145: a Cancer Research UK phase I trial of anti-GD2 chimeric antigen receptor (CAR) transduced T-cells (1RG-CART) in patients with relapsed or refractory neuroblastoma. AACR; 2018.
  • Straathof K, Flutter B, Wallace R, et al. Antitumor activity without on-target off-tumor toxicity of GD2-chimeric antigen receptor T cells in patients with neuroblastoma. Sci Transl Med. 2020;12:571.
  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005 Jan;2(1):3–14.
  • O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9:399.
  • Abramson JS, McGree B, Noyes S, et al. Anti-CD19 CAR T Cells in CNS Diffuse Large-B-Cell Lymphoma. United States 2017. p. 783–784.
  • Kushner BH, Ostrovnaya I, Cheung IY, et al. Prolonged progression-free survival after consolidating second or later remissions of neuroblastoma with Anti-G(D2) immunotherapy and isotretinoin: a prospective Phase II study. Oncoimmunology. 2015;4(7):e1016704–e.
  • Matthay KK, Brisse H, Couanet D, et al. Central nervous system metastases in neuroblastoma: radiologic, clinical, and biologic features in 23 patients. Cancer. 2003;98(1):155–165.
  • Shusterman S, London WB, Gillies SD, et al. Antitumor activity of hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a Children’s Oncology Group (COG) phase II study. J Clin Oncol. 2010;28(33):4969–4975.
  • Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–590.
  • Heczey A, Courtney AN, Montalbano A, et al. Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis. Nat Med. 2020;26(11):1686–1690.
  • Bi S, Wang C, Li Y, et al. LncRNA-MALAT1-mediated Axl promotes cell invasion and migration in human neuroblastoma. Tumour Biol. 2017;39(5):1010428317699796.
  • Tee AE, Liu B, Song R, et al. The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression. Oncotarget. 2016;7(8):8663–8675.
  • Yu Y, Chen F, Yang Y, et al. lncRNA SNHG16 is associated with proliferation and poor prognosis of pediatric neuroblastoma. Int J Oncol. 2019;55(1):93–102.
  • Bao J, Zhang S, Meng Q, et al. SNHG16 Silencing Inhibits Neuroblastoma Progression by Downregulating HOXA7 via Sponging miR-128-3p. Neurochem Res. 2020;45(4):825–836.
  • Tang W, Dong K, Li K, et al. MEG3, HCN3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1α and p53 pathways. Sci Rep. 2016;6(1):36268.
  • Pavlaki I, Alammari F, Sun B, et al. The long non-coding RNA Paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis. EMBO J. 2018;37:10.
  • Zhang N, Liu FL, Ma TS, et al. LncRNA SNHG1 contributes to tumorigenesis and mechanism by targeting miR-338-3p to regulate PLK4 in human neuroblastoma. Eur Rev Med Pharmacol Sci. 2019;23(20):8971–8983.
  • Zhang H-Y, Xing M-Q, Guo J, et al. Long noncoding RNA DLX6-AS1 promotes neuroblastoma progression by regulating miR-107/BDNF pathway. Cancer Cell Int. 2019;19:313.
  • Chi R, Chen X, Liu M, et al. Role of SNHG7-miR-653-5p-STAT2 feedback loop in regulating neuroblastoma progression. J Cell Physiol. 2019;234(8):13403–13412.
  • Aravindan N, Subramanian K, Somasundaram DB, et al. MicroRNAs in neuroblastoma tumorigenesis, therapy resistance, and disease evolution. Cancer Drug Resist. 2019;2:1086–1105.
  • Ramraj SK, Aravindan S, Somasundaram DB, et al. Serum-circulating miRNAs predict neuroblastoma progression in mouse model of high-risk metastatic disease. Oncotarget. 2016;7(14):18605–18619.
  • Ye W, Liang F, Ying C, et al. Downregulation of microRNA-3934-5p induces apoptosis and inhibits the proliferation of neuroblastoma cells by targeting TP53INP1. Exp Ther Med. 2019;18(5):3729–3736.
  • Han LL, Zhou XJ, Li FJ, et al. MiR-223-3p promotes the growth and invasion of neuroblastoma cell via targeting FOXO1. Eur Rev Med Pharmacol Sci. 2019;23(20):8984–8990.
  • Saeki N, Saito A, Sugaya Y, et al. Down-regulation of Tumor-suppressive let-7 Family MicroRNAs by LMO1 in Neuroblastoma. Cancer Genomics Proteomics. 2018;15(5):413–420.
  • Roth SA, ØH H, Fuchs S, et al. MicroRNA-193b-3p represses neuroblastoma cell growth via downregulation of Cyclin D1, MCL-1 and MYCN. Oncotarget. 2018;9(26):18160–18179.
  • Nolan JC, Salvucci M, Carberry S, et al. A Context-Dependent Role for MiR-124-3p on Cell Phenotype, Viability and Chemosensitivity in Neuroblastoma in vitro. Front Cell Dev Biol. 2020;8:559553.
  • Lopez FL, Ernest TB, Tuleu C, et al. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms. Expert Opin Drug Deliv. 2015;12(11):1727–1740.
  • Pottoo FH, Barkat MA, Harshita AMA, et al. Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Semin Cancer Biol. 2021 Feb;69:100-108.
  • Wan MF, Yang N, Qu NY, et al. MiR-424 suppressed viability and invasion by targeting to the DCLK1 in neuroblastoma. Eur Rev Med Pharmacol Sci. 2020;24(10):5526–5533.
  • Yang H, Guo JF, Zhang ML, et al. LncRNA SNHG4 promotes neuroblastoma proliferation, migration, and invasion by sponging miR-377-3p. Neoplasma. 2020;67(5):1054–1062.
  • Tian X, Zhou D, Chen L, et al. Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis. 2018;9(2):54.
  • Semina EV, Rubina KA, Shmakova AA, et al. Downregulation of uPAR promotes urokinase translocation into the nucleus and epithelial to mesenchymal transition in neuroblastoma. J Cell Physiol. 2020;235(9):6268–6286.
  • Fletcher JI, Ziegler DS, Trahair TN, et al. Too many targets, not enough patients: rethinking neuroblastoma clinical trials. Nat Rev Cancer. 2018;18(6):389–400.
  • Zhang L, Lv C, Jin Y, et al. Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma. Front Genet. 2018;9:477.
  • Yogev O, Almeida GS, Barker KT, et al. In Vivo Modeling of Chemoresistant Neuroblastoma Provides New Insights into Chemorefractory Disease and Metastasis. Cancer Res. 2019;79(20):5382.
  • Townsend EC, Murakami MA, Christodoulou A, et al. The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer Cell. 2016;29(4):574–586.
  • Teitz T, Stanke JJ, Federico S, et al. Preclinical models for Neuroblastoma: establishing a baseline for treatment. PLoS ONE. 2011;6:4.
  • Nolan JC, Frawley T, Tighe J, et al. Preclinical models for neuroblastoma: advances and challenges. Cancer Lett. 2020 Apr 1;474:53–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.