868
Views
5
CrossRef citations to date
0
Altmetric
Drug Evaluation

Bexagliflozin for type 2 diabetes: an overview of the data

ORCID Icon, , , , & ORCID Icon
Pages 2095-2103 | Received 17 May 2021, Accepted 21 Jul 2021, Published online: 29 Jul 2021

References

  • IDF. IDF diabetes atlas 9th edition. 2019 [cited 2021 Apr 2nd]. https://diabetesatlas.org/en.
  • Xu G, Liu B, Sun Y, et al. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study. BMJ 2018;362:k1497.
  • Skinner AC, Ravanbakht SN, Skelton JA, et al. Prevalence of obesity and severe obesity in US children, 1999-2016. Pediatrics. 2018;141(3):e20173459. .
  • Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) group. Lancet. 1998;352(9131):837–853.
  • Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–1589. .
  • Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–430. .
  • Patel A, MacMahon S, Chalmer J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–2572.
  • Shurraw S, Hemmelgarn B, Lin M, et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study. Arch Intern Med. 2011;171(21):1920–1927. .
  • Currie CJ, Peters JR, Tynan A, et al. Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375(9713):481–489. .
  • American Diabetes Association. 6. Glycemic Targets: standards of medical care in diabetes-2021. Diabetes Care. 2021 Jan;44(1):S73–S84.
  • Qaseem A, Wilt TJ, Kansagara D, et al. Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: a guidance statement update from the american college of physicians. Ann Intern Med. 2018;168(8):569–576. .
  • Palmer SC, Mavridis D, Nicolucci A, et al. Comparison of clinical outcomes and adverse events associated with glucose-Lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA. 2016;316(3):313–324. .
  • Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–1118.
  • DeFronzo RA, Davidson JA, Del PS. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab. 2012;14(1):5–14.
  • DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol. 2017;13(1):11–26.
  • Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med. 2015;66(1):255–270.
  • Abdul-Ghani MA, DeFronzo RA, Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Diabetes. 2013;62(10):3324–3328.
  • Ferrannini E, Solini A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat Rev Endocrinol. 2012;8(8):495–502.
  • Wilding JP, Woo V, Soler NG, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med. 2012;156(6):405–415. .
  • Rosenstock J, Jelaska A, Frappin G, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care. 2014;37(7):1815–1823. .
  • Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–274. .
  • Liu XY, Zhang N, Chen R, et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes: a meta-analysis of randomized controlled trials for 1 to 2years. J Diabetes Complications. 2015;29(8):1295–1303. .
  • Clar C, Gill JA, Court R, et al. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2(5):e001007. .
  • Nauck MA, Del Prato S, Meier JJ, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34(9):2015–2022. .
  • Schernthaner G, Gross JL, Rosenstock J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care. 2013;36(9):2508–2515. .
  • Weber MA, Mansfield TA, Cain VA, et al. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2016;4(3):211–220.
  • Tikkanen I, Narko K, Zeller C, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420–428. .
  • Townsend RR, Machin I, Ren J, et al. Reductions in mean 24-Hour ambulatory blood pressure after 6-Week treatment with canagliflozin in patients with type 2 diabetes mellitus and hypertension. J Clin Hypertens (Greenwich). 2016;18(1):43–52.
  • Weber MA, Mansfield TA, Alessi F, et al. Effects of dapagliflozin on blood pressure in hypertensive diabetic patients on renin-angiotensin system blockade. Blood Press. 2016;25(2):93–103.
  • Baker WL, Buckley LF, Kelly MS, et al. Effects of Sodium-Glucose cotransporter 2 inhibitors on 24-Hour ambulatory blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6(5). doi: https://doi.org/10.1161/JAHA.117.005686.
  • Mazidi M, Rezaie P, Gao H, et al. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017;6(6). doi: https://doi.org/10.1161/JAHA.116.004007.
  • Kohan DE, Floretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85(4):962–971. .
  • Kawasoe S, Maruguchi Y, Kajiya S, et al. Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacol Toxicol. 2017;18(1):23. .
  • Herat LY, Matthews VB, Magno AL, et al. An evaluation of empagliflozin and it’s applicability to hypertension as a therapeutic option. Expert Opin Pharmacother. 2020;21(10):1157–1166. .
  • Pfeifer M, Townsend RR, Davies MJ, et al. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis. Cardiovasc Diabetol. 2017;16(1):29. .
  • Sano M. Sodium glucose cotransporter (SGLT)-2 inhibitors alleviate the renal stress responsible for sympathetic activation. Ther Adv Cardiovasc Dis. 2020;14:1753944720939383.
  • Matthews VB, Elliot RH, Rudnicka C, et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens. 2017;35(10):2059–2068. .
  • Herat LY, Magno AL, Rudnicka C, et al. SGLT2 Inhibitor-Induced sympathoinhibition: a novel mechanism for cardiorenal protection. JACC Basic Transl Sci. 2020;5(2):169–179.
  • Sharaf El Din UAA, Salem MM, Abdulazim DO. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: a review. J Adv Res. 2017;8(5):537–548.
  • Facchini F, Chen YD, Hollenbeck CB, et al. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA. 1991;266(21):3008–3011. .
  • Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811–1821.
  • Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014;35(7):391–404. .
  • Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20(2):458–462. .
  • Forstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–735.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–1070.
  • Kusaka H, Koibuchi N, Hasegawa Y, et al. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome. Cardiovasc Diabetol. 2016;15(1):157. .
  • Lin B, Koibuchi N, Hasegawa Y, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014;13(1):148. .
  • FDA. Guidance for industry in diabetes mellitus - evaluating cardiovascular risk in new antidiabetic therapires to treat type 2 diabetes. 2008 [ cited 2021 Apr 24th]; Available from: https://www.federalregister.gov/documents/2008/12/19/E8-30086/guidance-for-industry-on-diabetes-mellitus-evaluating-cardiovascular-risk-in-new-antidiabetic.
  • Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–2471.
  • Home PD, Pocock SJ, Beck-Nielson H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–2135.
  • Zinman B, Wanner C, Lachin JM, et al., Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 373(22): 2117–2128. 2015.
  • Neal B, Perkovic V, Mahaffey KW, et al., Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 377(7): 644–657. 2017.
  • Wiviott SD, Raz I, Bonaca MP, et al., Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 380(4): 347–357. 2019.
  • Neal B, Perkovic V, Matthews DR, et al. Rationale, design, and baseline characteristics of the Canagliflozin Cardiovascular Assessment Study (CANVAS)–a randomized placebo-controlled trial. Am Heart J. 2013;166(2):217–223 e11.
  • Neal B, Perkovic V, De Zeeuw D, et al. Rationale, design and baseline characteristics of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R): a randomized, placebo-controlled trial. Diabetes Obes Metab. 2017;19(3):387–393. .
  • Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383(15):1425–1435
  • McMurray JJV, Solomon SD, Inzucchi SE, et al., Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 381(21): 1995–2008. 2019.
  • Packer M, Anker SD, Butler J, et al., Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 383(15): 1413–1424. 2020.
  • Zannad F, Ferreira JP, Pocock SJ, et al., SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 396(10254): 819–829. 2020.
  • Perkovic V, Jardine MJ, Neal B, et al., Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 380(24): 2295–2306. 2019.
  • Heerspink HJL, Stefansson BV, Chertow GM, et al. Rationale and protocol of the Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial. Nephrol Dial Transplant. 2020;35(2):274–282. .
  • Wheeler DC, Stefansson BV, Batiushin M, et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transplant. 2020;35(10):1700–1711. .
  • Heerspink HJL, Stefansoon BV, Correa-Rotter R, et al., Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 383(15): 1436–1446. 2020. .
  • McMurray JJV, Wheeler DC, Stefansso BV, et al. Effect of Dapagliflozin on clinical outcomes in patients with chronic kidney disease, with and without cardiovascular disease. Circulation. 2021;143(5):438–448.
  • Cherney DZI, Dekkers CCJ, Barbour SJ, et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020;8(7):582–593.
  • Heerspink HJL, Kosiborod M, Inzucchi SE, et al. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018;94(1):26–39.
  • Larmour K, Levin A. Slowing Progression in CKD: DAPA CKD and Beyond. Clin J Am Soc Nephrol. 2021;16(7):1117–1119.
  • Bhattacharya S, Rathore A, Parwani D, et al. An exhaustive perspective on structural insights of SGLT2 inhibitors: a novel class of antidiabetic agent. Eur J Med Chem. 2020;204:112523.
  • PubChem PD Bexagliflozin. 2021. [ cited 2021 May 3rd]; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Bexagliflozin.
  • Zhang W, Welihinda A, Mechanic J, et al. EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA(1c) levels in db/db mice and prolongs the survival of stroke-prone rats. Pharmacol Res. 2011;63(4):284–293. .
  • Zhang W, Li X, Ding H, et al. Metabolism and disposition of the SGLT2 inhibitor bexagliflozin in rats, monkeys and humans. Xenobiotica. 2020;50(5):559–569. .
  • Kuchay MS, Farooqui KJ, Mishra SK, et al. In: Islam MS, editors. Glucose lowering efficacy and pleiotropic effects of sodium-glucose cotransporter 2 inhibitors, in Diabetes: from Research to Clinical Practice: Volume 4. Springer International Publishing; 2021. p. 213–230.
  • Halvorsen YD, Walford G, Thurber T, et al. A 12-week, randomized, double-blind, placebo-controlled, four-arm dose-finding phase 2 study evaluating bexagliflozin as monotherapy for adults with type 2 diabetes. Diabetes Obes Metab. 2020;22(4):566–573. .
  • Halvorsen YC, Lock JP, Zhou W, et al. A 96-week, multinational, randomized, double-blind, parallel-group, clinical trial evaluating the safety and effectiveness of bexagliflozin as a monotherapy for adults with type 2 diabetes. Diabetes Obes Metab. 2019;21(11):2496–2504. .
  • Halvorsen YD, Walford GA, Massaro J, et al. A 24-week, randomized, double-blind, active-controlled clinical trial comparing bexagliflozin with sitagliptin as an adjunct to metformin for the treatment of type 2 diabetes in adults. Diabetes Obes Metab. 2019;21(10):2248–2256. .
  • Allegretti AS, Zhang W, Zhou W, et al., Safety and effectiveness of bexagliflozin in patients with type 2 diabetes mellitus and stage 3a/3b CKD. Am J Kidney Dis. 74(3): 328–337. 2019. .
  • McMurray JJV, Freeman MW, Massaro J, et al. 32-OR: the Bexagliflozin Efficacy and Safety Trial (BEST): a randomized, double-blind, placebo-Controlled, Phase IIII. 2020; 69(1): 32–OR. Clinical Trial. Diabetes.
  • FDA. FDA approves new treatment for a type of heart failure. 2020 [ cited 2021 May 9th]. https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-type-heart-failure
  • Vaduganathan M, Claggett BL, Jhund PS, et al. Estimating lifetime benefits of comprehensive disease-modifying pharmacological therapies in patients with heart failure with reduced ejection fraction: a comparative analysis of three randomised controlled trials. Lancet. 2020;396(10244):121–128.
  • AJMC. FDA approves canagliflozin to prevent kidney failure, hospitalization for heart failure. 2019 [ cited 2021 May 9th]. https://www.ajmc.com/view/fda-approves-canagliflozin-to-prevent-kidney-failure-hospitalization-for-heart-failure
  • ACC. FDA approves dapagliflozin to treat CKD. 2021 [ cited 2021 May 9th]. https://www.acc.org/latest-in-cardiology/articles/2021/05/03/19/11/fda-approves-dapagliflozin-to-treat-ckd.
  • Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;61(12):2461–2498.
  • Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2020;63(2):221–228. .
  • ADA. 9. pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S111–S124.
  • Li D, Wang T, Shen S, et al. Urinary tract and genital infections in patients with type 2 diabetes treated with sodium-glucose co-transporter 2 inhibitors: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2017;19(3):348–355. .
  • Weir MR, Januszewicz A, Gilbert RE, et al. Effect of canagliflozin on blood pressure and adverse events related to osmotic diuresis and reduced intravascular volume in patients with type 2 diabetes mellitus. J Clin Hypertens (Greenwich). 2014;16(12):875–882. .
  • Weir MR, Kline I, Xie J, et al. Effect of canagliflozin on serum electrolytes in patients with type 2 diabetes in relation to estimated glomerular filtration rate (eGFR). Curr Med Res Opin. 2014;30(9):1759–1768. .
  • Qiu H, Novikov A, Vallon V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: basic mechanisms and therapeutic perspectives. Diabetes Metab Res Rev. 2017;33(5):e2886.
  • Watts NB, Bilezikian JP, Usiskin K, et al. Effects of Canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101(1):157–166.
  • Tang HL, Li DD, Zhang JJ, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2016;18(12):1199–1206.
  • Khouri C, Cracowski JL, Roustit M. SGLT-2 inhibitors and the risk of lower-limb amputation: is this a class effect? Diabetes Obes Metab. 2018;20(6):1531–1534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.