659
Views
2
CrossRef citations to date
0
Altmetric
Perspective

What’s new on the front-line of gout pharmacotherapy?

, &
Pages 453-464 | Received 23 Aug 2021, Accepted 15 Dec 2021, Published online: 05 Jan 2022

References

  • Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016;388(10055):2039–2052.
  • Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16(7):380–390.
  • Singh JA, Gaffo A. Gout epidemiology and comorbidities. Semin Arthritis Rheum. 2020;50(3S):S11–S16.
  • Mattiuzzi C, Lippi G. Recent updates on worldwide gout epidemiology. Clin Rheumatol. 2020;39(4):1061–1063.
  • Flores NM, Nuevo J, Klein AB, et al. The economic burden of uncontrolled gout: how controlling gout reduces cost. J Med Econ. 2019;22(1):1–6.
  • Boulware DW, Heudebert GR. Lippincott’s primary care rheumatology. Philadelphia PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.
  • Abhishek A, Roddy E, Doherty M. Gout – a guide for the general and acute physicians. Clin Med. 2017;17(1):54.
  • Sil P, Wicklum H, Surell C, et al. Macrophage-derived il-1β enhances monosodium urate crystal-triggered net formation. Inflammation Res. 2017;66(3):227–237.
  • Chhana A, Dalbeth N. The gouty tophus: a review. Curr Rheumatol Rep. 2015;17(3):19.
  • Bardin T, Richette P. Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Med. 2017;15(1):123.
  • McCormick N, Rai SK, Lu N, et al. Estimation of primary prevention of gout in men through modification of obesity and other key lifestyle factors. JAMA Network Open. 2020;3(11):e2027421.
  • Major TJ, Topless RK, Dalbeth N, et al. Evaluation of the diet wide contribution to serum urate levels: meta-analysis of population based cohorts. Bmj. 2018;363:k3951.
  • Juraschek SP, Yokose C, McCormick N, et al. Effects of Dietary Patterns on Serum Urate: results From a Randomized Trial of the Effects of Diet on Hypertension. Arthritis Rheumatol. 2021 Jun;73(6):1014–1020.
  • Chen PE, Liu CY, Chien WH, et al. Effectiveness of cherries in reducing uric acid and gout: a systematic review. Evid Based Complement Alternat Med. 2019;2019:9896757.
  • Ben Salem C, Slim R, Fathallah N, et al. Drug-induced hyperuricaemia and gout. Rheumatology. 2016;56(5):679–688. Accessed 6/8/2021.
  • Li M, Yu C, Zeng X. Comparative efficacy of traditional non-selective NSAIDs and selective cyclo-oxygenase-2 inhibitors in patients with acute gout: a systematic review and meta-analysis. BMJ Open. 2020;10(9):e036748.
  • Engel B, Just J, Bleckwenn M, et al. Treatment options for gout. Dtsch Arztebl Int. 2017;114(13):215–222.
  • Schnitzer TJ, Burmester GR, Mysler E, et al. Comparison of lumiracoxib with naproxen and ibuprofen in the therapeutic arthritis research and gastrointestinal event trial (target), reduction in ulcer complications: randomised controlled trial. Lancet. 2004;364(9435):665–674.
  • FitzGerald JD, Dalbeth N, Mikuls T, et al. 2020 American college of rheumatology guideline for the management of gout. Arthritis Care Res (Hoboken). 2020;72(6):744–760.
  • Leung YY, Yao Hui LL, Kraus VB. Colchicine–update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 2015;45(3):341–350.
  • Terkeltaub RA, Furst DE, Bennett K, et al. High versus low dosing of oral colchicine for early acute gout flare: twenty-four–hour outcome of the first multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-comparison colchicine study. Arthritis Rheumatism. 2010;62(4):1060–1068.
  • Ahn SM, Oh JS, Hong S, et al. Comparative efficacy of low-dose versus regular-dose colchicine to prevent flares in gout patients initiated on urate-lowering therapies. Rheumatology (Oxford). 2021. DOI:https://doi.org/10.1093/rheumatology/keab303
  • Adcock IM, Mumby S. Glucocorticoids. In: Page CP, Barnes PJ, editors. Pharmacology and therapeutics of asthma and copd. Cham: Springer International Publishing; 2017. p. 171–196.
  • Rainer TH, Cheng CH, Janssens HJ, et al. Oral prednisolone in the treatment of acute gout: a pragmatic, multicenter, double-blind, randomized trial. Ann Intern Med. 2016;164(7):464–471.
  • Billy CA. Corticosteroid or nonsteroidal antiinflammatory drugs for the treatment of acute gout: a systematic review of randomized controlled trials. J Rheumatol. 2018;45(1):128–136.
  • Daoussis D, Antonopoulos I, Andonopoulos AP. ACTH as a treatment for acute crystal-induced arthritis: update on clinical evidence and mechanisms of action. Semin Arthritis Rheum. 2014;43(5):648–653.
  • Daoussis D, Antonopoulos I, Yiannopoulos G, et al. ACTH as first line treatment for acute gout in 181 hospitalized patients. Joint Bone Spine. 2013;80(3):291–294.
  • Khanna PP, Gladue HS, Singh MK, et al. Treatment of acute gout: a systematic review. Semin Arthritis Rheum. 2014;44(1):31–38.
  • Sharma E, Pedersen B, Terkeltaub R. Patients prescribed anakinra for acute gout have baseline increased burden of hyperuricemia, tophi, and comorbidities, and ultimate all-cause mortality. Clinical Medicine Insights Arthritis and Musculoskeletal Disorders. 2019;12:1179544119890853.
  • Janssen CA, Oude Voshaar MAH, Vonkeman HE, et al. Anakinra for the treatment of acute gout flares: a randomized, double-blind, placebo-controlled, active-comparator, non-inferiority trial. Rheumatology. 2019;58(8):1344–1352. Accessed 6/11/2021.
  • Liew JW, Gardner GC. Use of anakinra in hospitalized patients with crystal-associated arthritis. J Rheumatol. 2019;46(10):1345–1349.
  • Saag KG, Khanna PP, Keenan RT, et al. A randomized, phase ii study evaluating the efficacy and safety of anakinra in the treatment of gout flares. Arthritis Rheumatol. 2021 Aug;73(8):1533-1542. DOI: https://doi.org/10.1002/art.41699.
  • Solomon DH, Glynn RJ, MacFadyen JG, et al. Relationship of interleukin-1β blockade with incident gout and serum uric acid levels. Ann Intern Med. 2018;169(8):535–542. Accessed 2021/06/15.
  • Schlesinger N, Alten RE, Bardin T, et al. Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis. 2012;71(11):1839–1848.
  • Zeng L, Qasim A, Neogi T, et al. Efficacy and safety of pharmacologic interventions in patients experiencing a gout flare: a systematic review and network meta-analysis. Arthritis Care Res (Hoboken). 2021;73(5):755–764.
  • Sehested TSG, Bjerre J, Ku S, et al. Cost-effectiveness of canakinumab for prevention of recurrent cardiovascular events. JAMA Cardiol. 2019;4(2):128–135.
  • Richette P, Doherty M, Pascual E, et al. 2018 updated European league against rheumatism evidence-based recommendations for the diagnosis of gout. Ann Rheum Dis. 2020;79(1):31–38.
  • Shoji A, Yamanaka H, Kamatani N. A retrospective study of the relationship between serum urate level and recurrent attacks of gouty arthritis: evidence for reduction of recurrent gouty arthritis with antihyperuricemic therapy. Arthritis Rheum. 2004;51(3):321–325.
  • Abhishek A, Valdes AM, Zhang W, et al. Association of serum uric acid and disease duration with frequent gout attacks: a case-control study. Arthritis Care Res (Hoboken). 2016;68(10):1573–1577.
  • Doherty M, Jenkins W, Richardson H, et al. Efficacy and cost-effectiveness of nurse-led care involving education and engagement of patients and a treat-to-target urate-lowering strategy versus usual care for gout: a randomised controlled trial. Lancet. 2018;392(10156):1403–1412.
  • Perez-Ruiz F, Calabozo M, Pijoan JI, et al. Effect of urate-lowering therapy on the velocity of size reduction of tophi in chronic gout. Arthritis Rheum. 2002;47(4):356–360.
  • Day RO, Kannangara DR, Stocker SL, et al. Allopurinol: insights from studies of dose-response relationships. Expert Opin Drug Metab Toxicol. 2017;13(4):449–462.
  • Day RO, Graham GG, Hicks M, et al. Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin Pharmacokinet. 2007;46(8):623–644.
  • McInnes GT, Lawson DH, Jick H. Acute adverse reactions attributed to allopurinol in hospitalised patients. Ann Rheum Dis. 1981;40(3):245–249.
  • Gutiérrez-Macías A, Lizarralde-Palacios E, Martínez-Odriozola P, et al. Fatal allopurinol hypersensitivity syndrome after treatment of asymptomatic hyperuricaemia. Bmj. 2005;331(7517):623–624.
  • Singer JZ, Wallace SL. The allopurinol hypersensitivity syndrome. Unnecessary morbidity and mortality. Arthritis Rheum. 1986;29(1):82–87.
  • Ramasamy SN, Korb-Wells CS, Kannangara DR, et al. Allopurinol hypersensitivity: a systematic review of all published cases, 1950-2012. Drug Saf. 2013;36(10):953–980.
  • Sekula P, Dunant A, Mockenhaupt M, et al. Comprehensive survival analysis of a cohort of patients with Stevens-Johnson syndrome and toxic epidermal necrolysis. J Invest Dermatol. 2013;133(5):1197–1204.
  • Kim SC, Newcomb C, Margolis D, et al. Severe cutaneous reactions requiring hospitalization in allopurinol initiators: a population-based cohort study. Arthritis Care Res (Hoboken). 2013;65(4):578–584.
  • Stamp LK, Barclay ML. How to prevent allopurinol hypersensitivity reactions? Rheumatology (Oxford). 2018;57(suppl_1):i35–i41.
  • Tassaneeyakul W, Jantararoungtong T, Chen P, et al. Strong association between hla-b*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics. 2009;19(9):704–709.
  • González-Galarza FF, Takeshita LY, Santos EJ, et al. Allele frequency net 2015 update: new features for hla epitopes, kir and disease and hla adverse drug reaction associations. Nucleic Acids Res. 2015;43( Database issue):D784–788.
  • Jutkowitz E, Dubreuil M, Lu N, et al. The cost-effectiveness of hla-b*5801 screening to guide initial urate-lowering therapy for gout in the United States. Semin Arthritis Rheum. 2017;46(5):594–600.
  • Yu KH, Yu CY, Fang YF. Diagnostic utility of hla-b*5801 screening in severe allopurinol hypersensitivity syndrome: an updated systematic review and meta-analysis. Int J Rheum Dis. 2017;20(9):1057–1071.
  • Saokaew S, Tassaneeyakul W, Maenthaisong R, et al. Cost-effectiveness analysis of hla-b*5801 testing in preventing allopurinol-induced sjs/ten in Thai population. PLoS One. 2014;9(4):e94294.
  • Stamp LK, Barclay ML, O’Donnell JL, et al. Relationship between serum urate and plasma oxypurinol in the management of gout: determination of minimum plasma oxypurinol concentration to achieve a target serum urate level. Clin Pharmacol Ther. 2011;90(3):392–398.
  • Stamp LK, Taylor WJ, Jones PB, et al. Starting dose is a risk factor for allopurinol hypersensitivity syndrome: a proposed safe starting dose of allopurinol. Arthritis Rheum. 2012;64(8):2529–2536.
  • Dalbeth N, Kumar S, Stamp L, et al. Dose adjustment of allopurinol according to creatinine clearance does not provide adequate control of hyperuricemia in patients with gout. J Rheumatol. 2006;33(8):1646–1650.
  • Stamp LK, Chapman PT, Barclay ML, et al. A randomised controlled trial of the efficacy and safety of allopurinol dose escalation to achieve target serum urate in people with gout. Ann Rheum Dis. 2017;76(9):1522–1528.
  • Becker MA, Schumacher HR Jr., Wortmann RL, et al. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med. 2005;353(23):2450–2461.
  • Schumacher HR Jr., Becker MA, Wortmann RL, et al. Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase iii, randomized, double-blind, parallel-group trial. Arthritis Rheum. 2008;59(11):1540–1548.
  • FDA adds boxed warning for increased risk of death with gout medicine uloric (febuxostat). [cited 2021 July 15]. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-adds-boxed-warning-increased-risk-death-gout-medicine-uloric-febuxostat
  • White WB, Saag KG, Becker MA, et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018;378(13):1200–1210.
  • Ghang B, Ahn SM, Kim J, et al. Discontinuing febuxostat might cause more deaths than continuing febuxostat: the untold story from the cares trial. Rheumatology (Oxford). 2020;59(6):1439–1440.
  • Mackenzie IS, Ford I, Nuki G, et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (fast): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet. 2020;396(10264):1745–1757.
  • Perez-Ruiz F, Herrero-Beites A, Buruaga JSD. Chapter 12: Uricosuric Therapy of Hyperuricemia in Gout Gout and other crystal arthropathies. Elsevier. 2012. 148–153 DOI: 978-1-4377-2864-4.
  • Kim SC, Neogi T, Kang EH, et al. Cardiovascular Risks of Probenecid Versus Allopurinol in Older Patients With Gout. J Am Coll Cardiol. 2018;71(9):994–1004.
  • Borgi L, McMullan C, Wohlhueter A, et al. Effect of uric acid-lowering agents on endothelial function: a randomized, double-blind, placebo-controlled trial. Hypertension. 2017;69(2):243–248.
  • Rubinstein J, Lasko VM, Koch SE, et al. Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance. Am J Physiol Heart Circ Physiol. 2014;306(4):H574–584.
  • Nyberg M, Piil P, Kiehn OT, et al. Probenecid inhibits α-adrenergic receptor-mediated vasoconstriction in the human leg vasculature. Hypertension. 2018;71(1):151–159.
  • Jian Z, Ding S, Deng H, et al. Probenecid protects against oxygen-glucose deprivation injury in primary astrocytes by regulating inflammasome activity. Brain Res. 2016;1643:123–129.
  • Kaufmann P, Török M, Hänni A, et al. Mechanisms of benzarone and benzbromarone-induced hepatic toxicity. Hepatology. 2005;41(4):925–935.
  • Jansen TL. Benzbromarone withdrawn from the European market: another case of “absence of evidence is evidence of absence”? Clin Exp Rheumatol. 2004;22(5):651.
  • National Institute of Diabetes and Digestive and Kidney Diseases (U.S.).Livertox: clinical and research information on drug-induced liver injury.Bethesda (MD):National Institute of Diabetes and Digestive and Kidney Diseases.2012. 1 online resource (1 PDF file).
  • Li S, Yang H, Guo Y, et al. Comparative efficacy and safety of urate-lowering therapy for the treatment of hyperuricemia: a systematic review and network meta-analysis. Sci Rep. 2016;6(1):33082.
  • Saag KG, Fitz-Patrick D, Kopicko J, et al. Lesinurad combined with allopurinol: a randomized, double-blind, placebo-controlled study in gout patients with an inadequate response to standard-of-care allopurinol (a us-based study). Arthritis Rheumatol. 2017;69(1):203–212.
  • Bardin T, Keenan RT, Khanna PP, et al. Lesinurad in combination with allopurinol: a randomised, double-blind, placebo-controlled study in patients with gout with inadequate response to standard of care (the multinational clear 2 study). Ann Rheum Dis. 2017;76(5):811–820.
  • Dalbeth N, Jones G, Terkeltaub R, et al. Lesinurad, a selective uric acid reabsorption inhibitor, in combination with febuxostat in patients with tophaceous gout: findings of a phase iii clinical trial. Arthritis Rheumatol. 2017;69(9):1903–1913.
  • Fitz-Patrick D, Roberson K, Niwa K, et al. Safety and efficacy of verinurad, a selective urat1 inhibitor, for the treatment of patients with gout and/or asymptomatic hyperuricemia in the United States and Japan: findings from two phase ii trials. Mod Rheumatol. 2019;29(6):1042–1052.
  • Stack AG, Dronamraju N, Parkinson J, et al. Effect of intensive urate lowering with combined verinurad and febuxostat on albuminuria in patients with type 2 diabetes: a randomized trial. Am J Kidney Dis. 2021;77(4):481–489.
  • Fleischmann R, Winkle P, Miner JN, et al. Pharmacodynamic and pharmacokinetic effects and safety of verinurad in combination with allopurinol in adults with gout: a phase iia, open-label study. RMD Open. 2018;4(1):e000584.
  • Gregoire FM, Zhang F, Clarke HJ, et al. Mbx-102/jnj39659100, a novel peroxisome proliferator-activated receptor-ligand with weak transactivation activity retains antidiabetic properties in the absence of weight gain and edema. Mol Endocrinol. 2009;23(7):975–988.
  • Lavan BE, McWherter C, Choi Y-J. Fri0403 arhalofenate, a novel uricosuric agent, is an inhibitor of human uric acid transporters. Ann Rheum Dis. 2013;71(Suppl 3):450–451.
  • McWherter C, Choi YJ, Serrano RL, et al. Arhalofenate acid inhibits monosodium urate crystal-induced inflammatory responses through activation of amp-activated protein kinase (AMPK) signaling. Arthritis Res Ther. 2018;20(1):204.
  • Poiley J, Steinberg AS, Choi YJ, et al. A randomized, double-blind, active- and placebo-controlled efficacy and safety study of arhalofenate for reducing flare in patients with gout. Arthritis Rheumatol. 2016;68(8):2027–2034.
  • Hosoya T, Furuno K, Kanda S. A non-inferiority study of the novel selective urate reabsorption inhibitor dotinurad versus febuxostat in hyperuricemic patients with or without gout. Clin Exp Nephrol. 2020;24(Suppl 1):71–79.
  • Hosoya T, Sano T, Sasaki T, et al. Dotinurad versus benzbromarone in Japanese hyperuricemic patient with or without gout: a randomized, double-blind, parallel-group, phase 3 study. Clin Exp Nephrol. 2020;24(Suppl 1):62–70.
  • Lin Y, Chen X, Ding H, et al. Efficacy and safety of a selective urat1 inhibitor shr4640 in Chinese subjects with hyperuricemia: a randomized controlled phase ii study. Rheumatology (Oxford). 2021;60(11):5089–5097.
  • Yeh L-T, Polvent E, Shen Z, et al. Ar882, a potent and selective uricosuric agent, significantly reduced serum urate in patients with gout in a phase 2a study [abstract]. Arthritis Rheumatol. 2020;72:suppl 10. [cited 2021 August 1]. Available from: https://acrabstracts.org/abstract/ar882-a-potent-and-selective-uricosuric-agent-significantly-reduced-serum-urate-in-patients-with-gout-in-a-phase-2a-study/
  • Lee HA, Yu KS, Park SI, et al. Urc102, a potent and selective inhibitor of hurat1, reduced serum uric acid in healthy volunteers. Rheumatology (Oxford). 2019;58(11):1976–1984.
  • ClinicalTrials.gov. The safety, tolerability, pharmacokinetics and pharmacodynamics of xnw3009 in healthy subjects (nct04040907). 2019. [cited 2021 August1]. Available from: https://clinicaltrials.gov/ct2/show/NCT04040907
  • Wu XW, Lee CC, Muzny DM, et al. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A. 1989;86(23):9412–9416.
  • Sundy JS, Baraf HS, Yood RA, et al. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. Jama. 2011;306(7):711–720.
  • Baraf HS, Becker MA, Gutierrez-Urena SR, et al. Tophus burden reduction with pegloticase: results from phase 3 randomized trials and open-label extension in patients with chronic gout refractory to conventional therapy. Arthritis Res Ther. 2013;15(5):R137.
  • Strand V, Khanna D, Singh JA, et al. Improved health-related quality of life and physical function in patients with refractory chronic gout following treatment with pegloticase: evidence from phase iii randomized controlled trials. J Rheumatol. 2012;39(7):1450–1457.
  • Lipsky PE, Calabrese LH, Kavanaugh A, et al. Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res Ther. 2014;16(2):R60.
  • Calabrese LH, Kavanaugh A, Yeo AE, et al. Frequency, distribution and immunologic nature of infusion reactions in subjects receiving pegloticase for chronic refractory gout. Arthritis Res Ther. 2017;19(1):191.
  • Keenan RT, Baraf HSB, LaMoreaux B. Use of pre-infusion serum uric acid levels as a biomarker for infusion reaction risk in patients on pegloticase. Rheumatol Ther. 2019;6(2):299–304.
  • Botson JK, Tesser JRP, Bennett R, et al. Pegloticase in combination with methotrexate in patients with uncontrolled gout: a multicenter, open-label study (mirror). J Rheumatol. 2021;48(5):767–774.
  • Khanna PP, Khanna D, Cutter G, et al. Reducing immunogenicity of pegloticase with concomitant use of mycophenolate mofetil in patients with refractory gout: a phase ii, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2021 Mar 22;73(8):1523–1532.
  • ClinicalTrials.gov. Tolerization reduces intolerance to pegloticase and prolongs the urate lowering effect (triple) (nct02598596). 2019. [cited 2021 August 1]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02598596?term=pegloticase§triple&rank=1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.