179
Views
0
CrossRef citations to date
0
Altmetric
Review

The role of istradefylline in the Parkinson’s disease armamentarium

ORCID Icon
Pages 863-871 | Received 08 Feb 2023, Accepted 06 Apr 2023, Published online: 18 Apr 2023

References

  • Przuntek H, Müller T, Riederer P. Diagnostic staging of Parkinson’s disease: conceptual aspects. J Neural Transm. 2004;111(2):201–216.
  • Deuschl G, Beghi E, Fazekas F, et al. The burden of neurological diseases in Europe: an analysis for the global burden of disease study 2017. Lancet Public Health. 2020;5(10):e551–567. DOI:10.1016/S2468-2667(20)30190-0
  • Müller T. What are the main considerations when prescribing pharmacotherapy for Parkinson’s disease? Expert Opin Pharmacother. 2022;23(7):745–750. DOI:10.1080/14656566.2022.2045275
  • Sivanandy P, Leey TC, Xiang TC, et al. Systematic review on Parkinson’s disease medications, emphasizing on three recently approved drugs to control Parkinson’s symptoms. Int J Environ Res public Health. 2021;19(1):364. Epub. DOI:10.3390/ijerph19010364
  • Kulkarni A, Preeti K, Tryphena KP, et al. Proteostasis in Parkinson’s disease: recent development and possible implication in diagnosis and therapeutics. Ageing ResRev. 2023;84:101816.
  • Müller T, Mueller BK, Riederer P. Perspective: treatment for disease modification in chronic neurodegeneration. Cells. 2021;10(4):873. Epub. DOI:10.3390/cells10040873
  • Espay AJ, Okun MS. Abandoning the proteinopathy paradigm in Parkinson disease. JAMA Neurol. 2022;80(2):123. Epub. DOI:10.1001/jamaneurol.2022.4193
  • Khot M, Sood A, Tryphena KP, et al. NLRP3 inflammasomes: a potential target to improve mitochondrial biogenesis in Parkinson’s disease. Eur J Pharmacol. 2022;934:175300.
  • Tryphena KP, Anuradha U, Kumar R, et al. Understanding the involvement of microRNAs in mitochondrial dysfunction and their role as potential biomarkers and therapeutic targets in Parkinson’s disease. J Alzheimers Dis. 2022;1–16. Epub. DOI:10.3233/JAD-220449
  • Naren P, Cholkar A, Kamble S, et al. Pathological and therapeutic advances in Parkinson’s disease: mitochondria in the interplay. J Alzheimers Dis. 2022;1–30. Epub. DOI:10.3233/JAD-220682
  • Smolders S, Van BC. Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson’s disease pathogenesis. Acta Neuropathol Commun. 2020;8(1):63.
  • Müller T, Trommer I, Muhlack S, et al. Levodopa increases oxidative stress and repulsive guidance molecule a levels: a pilot study in patients with Parkinson’s disease. J Neural Transm (Vienna). 2016;123(4):401–406. DOI:10.1007/s00702-016-1519-4
  • Müller T. Drug therapy in patients with Parkinson’s disease. Transl Neurodegener. 2012;1(1):1–10.
  • Fabbrini G, Di SF, Bloise M, et al. Soluble and controlled-release preparations of levodopa: do we really need them? J Neurol. 2010;257(Suppl 2):S292–297. DOI:10.1007/s00415-010-5734-x
  • Glenardi G, Handayani T, Barus J, et al. Inhaled levodopa (CVT-301) for the treatment of Parkinson disease: a systematic review and meta-analysis of randomized controlled trials. Neurol Clin Pract. 2022;12(2):139–148. DOI:10.1212/CPJ.0000000000001143
  • LeWitt PA, Stocchi F, Arkadir D, et al. The pharmacokinetics of continuous subcutaneous levodopa/carbidopa infusion: findings from the ND0612 clinical development program. Front Neurol. 2022;13:1036068.
  • Soileau MJ, Aldred J, Budur K, et al. Safety and efficacy of continuous subcutaneous foslevodopa-foscarbidopa in patients with advanced Parkinson’s disease: a randomised, double-blind, active-controlled, phase 3 trial. Lancet Neurol. 2022;21(12):1099–1109. DOI:10.1016/S1474-4422(22)00400-8
  • Fasano A, Garcia-Ramos R, Gurevich T, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease: long-term results from COSMOS. J Neurol. 2023. DOI:10.1007/s00415-023-11615-3
  • Harati A, Müller T. Neuropsychological effects of deep brain stimulation for Parkinson’s disease. Surg Neurol Int. 2013;4(Suppl 6):S443–447.
  • Klostermann F, Jugel C, Bomelburg M, et al. Severe gastrointestinal complications in patients with levodopa/carbidopa intestinal gel infusion. Mov Disord. 2012;27(13):1704–1705. DOI:10.1002/mds.25238
  • Müller T. GOCOVRI((R)) (amantadine) extended-release capsules in Parkinson’s disease. Neurodegener Dis Manag. 2022;12(1):15–28.
  • Müller T. Pharmacokinetic drug evaluation of safinamide mesylate for the treatment of mid-to-late stage Parkinson’s disease. Expert Opin drug Metab Toxicol. 2017;13(6):693–699.
  • Ferre S, Popoli P, Gimenez-Llort L, et al. Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport. 1994;6(1):73–76. DOI:10.1097/00001756-199412300-00020
  • Harvey V, Jones J, Misra A, et al. Solubilisation and immunoprecipitation of rat striatal adenosine A(2A) receptors. Eur J Pharmacol. 2001;431(2):171–177. DOI:10.1016/S0014-2999(01)01435-2
  • Hickey P, Stacy M. Adenosine A2A antagonists in Parkinson’s disease: what’s next? Curr Neurol Neurosci Rep. 2012;12(4):376–385.
  • Jenner P, Mori A, Hauser R, et al. Adenosine, adenosine a 2A antagonists, and Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(6):406–413. DOI:10.1016/j.parkreldis.2008.12.006
  • Buira SP, Albasanz JL, Dentesano G, et al. DNA methylation regulates adenosine A(2A) receptor cell surface expression levels. J Neurochem. 2010;112(5):1273–1285. DOI:10.1111/j.1471-4159.2009.06538.x
  • Bennett KA, Tehan B, Lebon G, et al. Pharmacology and structure of isolated conformations of the adenosine A2A receptor define ligand efficacy. Mol Pharmacol. 2013;83(5):949–958. DOI:10.1124/mol.112.084509
  • Collins LE, Galtieri DJ, Collins P, et al. Interactions between adenosine and dopamine receptor antagonists with different selectivity profiles: effects on locomotor activity. BehavBrain Res. 2010;211(2):148–155. DOI:10.1016/j.bbr.2010.03.003
  • Perez V, Sosti V, Rubio A, et al. Modulation of the motor response to dopaminergic drugs in a parkinsonian model of combined dopaminergic and noradrenergic degeneration. Eur J Pharmacol. 2007;576(1–3):83–90. DOI:10.1016/j.ejphar.2007.08.024
  • Chen JF, Xu K, Petzer JP, et al. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci. 2001;21(10):RC143. DOI:10.1523/JNEUROSCI.21-10-j0001.2001
  • Kartzinel R, Shoulson I, Calne DB. Studies with bromocriptine: iII. concomitant administration of caffeine to patients with idiopathic parkinsonism. Neurology. 1976;26(8):741–743.
  • Shoulson I, Chase T. Caffeine and the antiparkinsonian response to levodopa or piribedil. Neurology. 1975;25(8):722–724.
  • Kitagawa M, Houzen H, Tashiro K. Effects of caffeine on the freezing of gait in Parkinson’s disease. Mov Disord. 2007;22(5):710–712.
  • Postuma RB, Lang AE, Munhoz RP, et al. Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology. 2012;79(7):651–658. DOI:10.1212/WNL.0b013e318263570d
  • Pourcher E, Fernandez HH, Stacy M, et al. Istradefylline for Parkinson’s disease patients experiencing motor fluctuations: results of the KW-6002-US-018 study. Parkinsonism Relat Disord. 2012;18(2):178–184. DOI:10.1016/j.parkreldis.2011.09.023
  • Stacy M, Silver D, Mendis T, et al. A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology. 2008;70(23):2233–2240. DOI:10.1212/01.wnl.0000313834.22171.17
  • Hauser RA, Olanow CW, Kieburtz KD, et al. Tozadenant (SYN115) in patients with Parkinson’s disease who have motor fluctuations on levodopa: a phase 2b, double-blind, randomised trial. Lancet Neurol. 2014;13(8):767–776. DOI:10.1016/S1474-4422(14)70148-6
  • Hauser R, Stocchi F, Rascol O, et al. Phase-3 clinical trials of adjunctive therapy with preladenant, an adenosine 2a antagonist, in patients with Parkinson’s disease. Neurology. 2014;82(10 (Supplement)):P7.087.
  • LeWitt PA, Aradi SD, Hauser RA, et al. The challenge of developing adenosine A(2A) antagonists for Parkinson disease: istradefylline, preladenant, and tozadenant. Parkinsonism Relat Disord. 2020;80(1):S54–63. DOI:10.1016/j.parkreldis.2020.10.027
  • Rao N, Dvorchik B, Sussman N, et al. A study of the pharmacokinetic interaction of istradefylline, a novel therapeutic for Parkinson’s disease, and atorvastatin. J Clin Pharmacol. 2008;48(9):1092–1098. DOI:10.1177/0091270008320924
  • Rao N. Re: efflux transporter-mediated interactions with atorvastatin–interesting findings with multiple substrates: istradefylline, verapamil, and rifampicin. J Clin Pharmacol. 2011;51(5):784.
  • Bibbiani F, Oh JD, Petzer JP, et al. A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson’s disease. Exp Neurol. 2003;184(1):285–294. DOI:10.1016/S0014-4886(03)00250-4
  • Chen JF, Fredduzzi S, Bastia E, et al. Adenosine A2A receptors in neuroadaptation to repeated dopaminergic stimulation: implications for the treatment of dyskinesias in Parkinson’s disease. Neurology. 2003;61(11 Suppl 6):S74–81. DOI:10.1212/01.WNL.0000095218.26363.7B
  • Grondin R, Bedard PJ, Hadj TA, et al. Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology. 1999;52(8):1673–1677. DOI:10.1212/WNL.52.8.1673
  • Kase H, Aoyama S, Ichimura M, et al. Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson’s disease. Neurology. 2003;61(11 Suppl 6):S97–100. DOI:10.1212/01.WNL.0000095219.22086.31
  • Orru M, Bakesova J, Brugarolas M, et al. Striatal pre- and postsynaptic profile of adenosine A(2A) receptor antagonists. PLoS One. 2011;6(1):e16088. DOI:10.1371/journal.pone.0016088
  • Knebel W, Rao N, Uchimura T, et al. Population pharmacokinetic analysis of istradefylline in healthy subjects and in patients with Parkinson’s disease. J Clin Pharmacol. 2011;51(1):40–52. DOI:10.1177/0091270010363809
  • Knebel W, Rao N, Uchimura T, et al. Population pharmacokinetic-pharmacodynamic analysis of istradefylline in patients with Parkinson disease. J Clin Pharmacol. 2012;52(10):1468–1481. DOI:10.1177/0091270011420566
  • Chase TN, Bibbiani F, Bara-Jimenez W, et al. Translating A2A antagonist KW6002 from animal models to parkinsonian patients. Neurology. 2003;61(11 Suppl 6):S107–111. DOI:10.1212/01.WNL.0000095223.08711.48
  • Lundblad M, Vaudano E, Cenci MA. Cellular and behavioural effects of the adenosine A2a receptor antagonist KW-6002 in a rat model of l-DOPA-induced dyskinesia. J Neurochem. 2003;84(6):1398–1410.
  • Lundblad M, Usiello A, Carta M, et al. Pharmacological validation of a mouse model of l-DOPA-induced dyskinesia. Exp Neurol. 2005;194(1):66–75. DOI:10.1016/j.expneurol.2005.02.002
  • Xiao D, Bastia E, Xu YH, et al. Forebrain adenosine A2A receptors contribute to L-3,4-dihydroxyphenylalanine-induced dyskinesia in hemiparkinsonian mice. J Neurosci. 2006;26(52):13548–13555. DOI:10.1523/JNEUROSCI.3554-06.2006
  • Fernandez HH, Greeley DR, Zweig RM, et al. Istradefylline as monotherapy for Parkinson disease: results of the 6002-US-051 trial. Parkinsonism Relat Disord. 2010;16(1):16–20. DOI:10.1016/j.parkreldis.2009.06.008
  • Hauser RA, Shulman LM, Trugman JM, et al. Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord. 2008;23(15):2177–2185. DOI:10.1002/mds.22095
  • LeWitt PA, Guttman M, Tetrud JW, et al. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol. 2008;63(3):295–302. DOI:10.1002/ana.21315
  • Mizuno Y, Hasegawa K, Kondo T, et al. Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord. 2010;25(10):1437–1443. DOI:10.1002/mds.23107
  • Mizuno Y, Kondo T. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov Disord. 2013;28(8):1138–1141.
  • Hauser RA, Hattori N, Fernandez H, et al. Efficacy of istradefylline, an adenosine A2A receptor antagonist, as adjunctive therapy to levodopa in Parkinson’s disease: a pooled analysis of 8 phase 2b/3 trials. J Parkinsons Dis. 2021;11(4):1663–1675. DOI:10.3233/JPD-212672
  • Jenner P, Mori A, Aradi SD, et al. Istradefylline - a first generation adenosine A(2A) antagonist for the treatment of Parkinson’s disease. Expert Rev Neurother. 2021;21(3):317–333. DOI:10.1080/14737175.2021.1880896
  • Jenner P. Istradefylline, a novel adenosine A2A receptor antagonist, for the treatment of Parkinson’s disease. Expert Opin Investig Drugs. 2005;14(6):729–738. DOI:10.1517/13543784.14.6.729
  • Müller T, Woitalla D, Saft C, et al. Levodopa in plasma correlates with body weight of parkinsonian patients. Parkinsonism Relat Disord. 2000;6(3):171–173. DOI:10.1016/S1353-8020(00)00005-5
  • Pinna A. Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs. 2014;28(5):455–474.
  • Zhu C, Wang G, Li J, et al. Adenosine A2A receptor antagonist istradefylline 20 versus 40 mg/day as augmentation for Parkinson’s disease: a meta-analysis. Neurol Res. 2014;36(11):1028–1034. DOI:10.1179/1743132814Y.0000000375
  • Takahashi M, Ito S, Tsuji Y, et al. Safety and effectiveness of istradefylline as add-on therapy to levodopa in patients with Parkinson’s disease: Final report of a post-marketing surveillance study in Japan. J Neurol Sci. 2022;443:120479.
  • Takahashi M, Shimokawa T, Koh J, et al. Efficacy and safety of istradefylline in patients with Parkinson’s disease presenting with postural abnormalities: Results from a multicenter, prospective, and open-label exploratory study in Japan. J Neurol Sci. 2022;432:120078.
  • Tao Y, Liang G. Efficacy of adenosine A2A receptor antagonist istradefylline as augmentation for Parkinson’s disease: a meta-analysis of randomized controlled trials. Cell Biochem Biophys. 2015;71(1):57–62.
  • Yabe I, Kitagawa M, Takahashi I, et al. The Efficacy of Istradefylline for Treating Mild Wearing-Off in Parkinson Disease. Clin Neuropharmacol. 2017;40(6):261–263. DOI:10.1097/WNF.0000000000000249
  • Isobe C, Murata T, Sato C, et al. Increase of total homocysteine concentration in cerebrospinal fluid in patients with Alzheimer’s disease and Parkinson’s disease. Life Sci. 2005;77(15):1836–1843. DOI:10.1016/j.lfs.2005.02.014
  • Isobe C, Abe T, Terayama Y. Homocysteine may contribute to pathogenesis of RNA damage in brains with Alzheimer’s disease. Neurodegener Dis. 2009;6(5–6):252–257.
  • Isobe C, Abe T, Terayama Y. L-Dopa therapy increases homocysteine concentration in cerebrospinal fluid from patients with Parkinson’s disease. J Clin Neurosci. 2010;17(6):717–721.
  • Müller T. Detoxification and antioxidative therapy for levodopa-induced neurodegeneration in Parkinson’s disease. Expert Rev Neurother. 2013;13(6):707–718.
  • Müller T, Kohlhepp W. Hypomethylation in Parkinson’s disease: An epigenetic drug effect?. Mov Disord. 2016;31(4):605.
  • Buira SP, Dentesano G, Albasanz JL, et al. DNA methylation and Yin Yang-1 repress adenosine A2A receptor levels in human brain. J Neurochem. 2010;115(1):283–295. DOI:10.1111/j.1471-4159.2010.06928.x
  • Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351(24):2498–2508.
  • Olanow CW, Kieburtz K, Rascol O, et al. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013;28(8):1064–1071. DOI:10.1002/mds.25364
  • Stocchi F, Rascol O, Kieburtz K, et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol. 2010;68(1):18–27. DOI:10.1002/ana.22060
  • Müller T, Woitalla D, Goetze O, et al. Entacapone improves absorption of a coadministered salt in patients with Parkinson’s disease. Mov Disord. 2008;23(10):1458–1461. DOI:10.1002/mds.22176
  • Müller T. Catechol-O-Methyltransferase Inhibitors in Parkinson’s Disease. Drugs. 2015;75(2):157–174.
  • Müller T, Schlegel E, Zingler S, et al. Effects of One-Day Application of Levodopa/Carbidopa/Entacapone versus Levodopa/Carbidopa/Opicapone in Parkinson’s Disease Patients. Cells. 2022;11(9):1511. DOI:10.3390/cells11091511
  • Russ H, Müller T, Woitalla D, et al. Detection of tolcapone in the cerebrospinal fluid of parkinsonian subjects. Naunyn Schmiedebergs Arch Pharmacol. 1999;360(6):719–720. DOI:10.1007/s002109900168
  • Przuntek H, Conrad B, Dichgans J, et al. SELEDO: a 5-year long-term trial on the effect of selegiline in early Parkinsonian patients treated with levodopa. Eur J Neurol. 1999;6(2):141–150. DOI:10.1111/j.1468-1331.1999.tb00007.x
  • Müller T, Laar van LT, Cornblath DR, et al. Peripheral neuropathy in Parkinson’s disease: levodopa exposure and implications for duodenal delivery. Parkinsonism Relat Disord. 2013;19(5):501–507. DOI:10.1016/j.parkreldis.2013.02.006
  • Jugel C, Ehlen F, Taskin B, et al. Neuropathy in Parkinson’s disease patients with intestinal levodopa infusion versus oral drugs. PLoS One. 2013;8(6):e66639. DOI:10.1371/journal.pone.0066639
  • Morley JF, Duda JE. Parkinson’s disease and the risk of cerebrovascular pathology. Mov Disord. 2012;27(12):1471–1472.
  • Rektor I, Goldemund D, Bednarik P, et al. Impairment of brain vessels may contribute to mortality in patients with Parkinson’s disease. Mov Disord. 2012;27(9):1169–1172. DOI:10.1002/mds.25066
  • Schwartz RS, Halliday GM, Cordato DJ, et al. Small-vessel disease in patients with Parkinson’s disease: a clinicopathological study. Mov Disord. 2012;27(12):1506–1512. DOI:10.1002/mds.25112
  • Gray R, Ives N, Rick C, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384(9949):1196–1205. DOI:10.1016/S0140-6736(14)60683-8
  • Hauser RA, Hubble JP, Truong DD. Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology. 2003;61(3):297–303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.