138
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in adrenergic receptors for the treatment of chronic obstructive pulmonary disease: 2023 update

, , , & ORCID Icon
Pages 2133-2142 | Received 06 Sep 2023, Accepted 08 Nov 2023, Published online: 15 Nov 2023

References

  • Cazzola M, Page CP, Calzetta L, et al. Pharmacology and therapeutics of bronchodilators. Pharmacol Rev. 2012;64(3):450–504. doi: 10.1124/pr.111.004580
  • Cazzola M, Page CP, Rogliani P, et al. β2-agonist therapy in lung disease. Am J Respir Crit Care Med. 2013;187(7):690–696. doi: 10.1164/rccm.201209-1739PP
  • Matera MG, Page CP, Calzetta L, et al. Pharmacology and therapeutics of bronchodilators revisited. Pharmacol Rev. 2020;72(1):218–252. doi: 10.1124/pr.119.018150
  • Cazzola M, Matera MG. Bronchodilators for airway disease. In: James S, editor Encyclopedia of respiratory medicine. 2nd ed. Academic Press: Elsevier; 2022. p. 712–728.
  • Deeney BT, Cao G, Orfanos S, et al. Epinephrine evokes shortening of human airway smooth muscle cells following β2 adrenergic receptor desensitization. Am J Physiol Lung Cell Mol Physiol. 2022;323(2):L142–L151. doi: 10.1152/ajplung.00444.2021
  • Billington CK, Ojo OO, Penn RB, et al. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther. 2013;26(1):112–120. doi: 10.1016/j.pupt.2012.05.007
  • Brichetto L, Song P, Crimi E, et al. Modulation of cholinergic responsiveness through the [beta]-adrenoceptor signal transmission pathway in bovine trachealis. J Appl Physiol (1985). 2003;95(2):735–741. doi: 10.1152/japplphysiol.00028.2003
  • Matera MG, Page C, Rinaldi B. β2-Adrenoceptor signalling bias in asthma and COPD and the potential impact on the comorbidities associated with these diseases. Curr Opin Pharmacol. 2018;40:142–146. doi: 10.1016/j.coph.2018.04.012
  • Ippolito M, Benovic JL. Biased agonism at β-adrenergic receptors. Cell Signal. 2021;80:109905.
  • Rajagopal S, Shenoy SK. GPCR desensitization: acute and prolonged phases. Cell Signal. 2018;41:9–16. doi: 10.1016/j.cellsig.2017.01.024
  • Matera MG, RA P Jr. β2-adrenoceptor modulation in COPD and its potential impact on cardiovascular comorbidities. In: Martínez-García M, Pépin J-L Cazzola M, editors Cardiovascular complications of respiratory disorders (ERS monograph). Sheffield: European Respiratory Society; 2020. p. 229–237.
  • Panettieri RA Jr. Bronchodilators, receptors and cross-talk: together is better? Postgrad Med. 2015;127(7):771–780. doi: 10.1080/00325481.2015.1080589
  • Cazzola M, Rogliani P, Matera MG. The future of bronchodilators in COPD and asthma. Arch Bronconeumol. 2022;58(2):107–108. doi: 10.1016/j.arbres.2021.06.005
  • Van Ly D, Oliver BG. Do we really need to keep redesigning β2-agonists for the management of asthma? Curr Drug Deliv. 2015;12(1):9–15. doi: 10.2174/1567201811666140606112918
  • Cazzola M, Calzetta L, Matera MG. β2-adrenoceptor agonists: current and future direction. Br J Pharmacol. 2011;163(1):4–17. doi: 10.1111/j.1476-5381.2011.01216.x
  • Cazzola M, Matera MG, Lötvall J. Ultra long-acting β2-agonists in development for asthma and chronic obstructive pulmonary disease. Expert Opin Investig Drugs. 2005;14(7):775–783. doi: 10.1517/13543784.14.7.775
  • Xing G, Woo AY, Pan L, et al. Recent advances in β2-agonists for treatment of chronic respiratory diseases and heart failure. J Med Chem. 2020;63(24):15218–15242. doi: 10.1021/acs.jmedchem.0c01195
  • Aparici M, Gómez-Angelats M, Vilella D, et al. Pharmacological characterization of abediterol, a novel inhaled β2-adrenoceptor agonist with long duration of action and a favorable safety profile in preclinical models. J Pharmacol Exp Ther. 2012;342(2):497–509. doi: 10.1124/jpet.112.193284
  • Timmer W, Massana E, Jimenez E, et al. First-in-human study of the safety, tolerability, pharmacokinetics and pharmacodynamics of abediterol (LAS100977), a novel long-acting Β2-agonist. J Clin Pharmacol. 2014;54(12):1347–1353. doi: 10.1002/jcph.355
  • Beier J, Fuhr R, Massana E, et al. Abediterol (LAS100977), a novel long-acting β2-agonist: efficacy, safety and tolerability in persistent asthma. Respir med. 2014;108(10):1424–1429. doi: 10.1016/j.rmed.2014.08.005
  • Singh D, Pujol H, Ribera A, et al. A dose-ranging study of the bronchodilator effects of abediterol (LAS100977), a long-acting β2-adrenergic agonist, in asthma; a phase II, randomized study. BMC Pulm Med. 2014;14(1):176. doi: 10.1186/1471-2466-14-176
  • Beier J, Fuhr R, Seoane B, et al. Efficacy, safety, and tolerability of once-daily abediterol in patients with stable, persistent asthma: a phase II, randomized, 7-day, crossover study. Pharmacol Res Perspect. 2017;5(5):e00356. doi: 10.1002/prp2.356
  • Beier J, Pujol H, Seoane B, et al. Abediterol, a novel long-acting β2-agonist: bronchodilation, safety, tolerability and pharmacokinetic results from a single-dose, dose-ranging, active-comparator study in patients with COPD. BMC Pulm Med. 2016;16(1):102. doi: 10.1186/s12890-016-0266-5
  • Kobayashi M, Takeda K, Murata S, et al. Pharmacological characterization of KUR-1246, a selective uterine relaxant. J Pharmacol Exp Ther. 2001;297(2):666–671.
  • Inoue Y, Yoshizato T, Kawarabayashi T. Investigation of β2-adrenoceptor subtype selectivity and organ specificity for bedoradrine (KUR-1246), a novel tocolytic beta-adrenergic receptor stimulant. J Obstet Gynaecol Res. 2009;35(3):405–413. doi: 10.1111/j.1447-0756.2008.01001.x
  • Kiguchi S, Matsuda T, Cho K, et al. KUR-1246, a novel β2-adrenoceptor agonist, as a tocolytic agent. Obstet Gynecol. 2002;100(3):487–494. doi: 10.1097/00006250-200209000-00015
  • Antoniu S. Bedoradrine for treating asthma and chronic obstructive pulmonary disease. Expert Opin Investig Drugs. 2014;23(8):1149–1156. doi: 10.1517/13543784.2014.928284
  • Matsuda K, Makhay M, Johnson K, et al. Evaluation of bedoradrine sulfate (MN-221), a novel, highly selective beta2-adrenergic receptor agonist for the treatment of asthma via intravenous infusion. J Asthma. 2012;49(10):1071–1078. doi: 10.3109/02770903.2012.729631
  • House SL, Matsuda K, O’Brien G, et al. Efficacy of a new intravenous β2-adrenergic agonist (bedoradrine, MN-221) for patients with an acute exacerbation of asthma. Respir med. 2015;109(10):1268–1273. doi: 10.1016/j.rmed.2015.08.003
  • Pearle J, Iwaki Y, Dunton AW, et al. Intravenous MN-221, a novel, highly selective beta2-adrenergic receptor agonist, improves lung function in stable moderate to severe chronic obstructive pulmonary disease patients [abstract]. Chest. 2010;138(Suppl.):487A. doi: 10.1378/chest.10047
  • Xing G, Yi C, Dou P, et al. Recent progress in the development of β2 adrenergic receptor agonists: a patent review (2015-2020). Expert Opin Ther Pat. 2021;31(3):239–246. doi: 10.1080/13543776.2021.1865312
  • Burkes RM, Panos RJ. Ultra long-acting β-agonists in chronic obstructive pulmonary disease. J Exp Pharmacol. 2020;12:589–602. doi: 10.2147/JEP.S259328
  • Sunahara R, Huebner H, Shonberg J, et al. Beta-2 selective adrenergic receptor agonists. WO 2019112913 A1 20190613, PCT Int. Appl. 2019. Available from: https://patents.google.com/patent/WO2019112913A1/en
  • Ge X, Woo AY, Xing G, et al. Synthesis and biological evaluation of β2-adrenoceptor agonists bearing the 2-amino-2-phenylethanol scaffold. Eur J Med Chem. 2018;152:424–435. doi: 10.1016/j.ejmech.2018.04.041
  • Woo AY, Ge XY, Pan L, et al. Discovery of β-arrestin-biased β2-adrenoceptor agonists from 2-amino-2-phenylethanol derivatives. Acta Pharmacol Sin. 2019;40(8):1095–1105. doi: 10.1038/s41401-018-0200-x
  • Xing G, Pan L, Yi C, et al. Design, synthesis and biological evaluation of 5-(2-amino-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one derivatives as potent β2-adrenoceptor agonists. Bioorg Med Chem. 2019;27(12):2306–2314. doi: 10.1016/j.bmc.2018.10.043
  • Ge X, Mo Y, Xing G, et al. Synthesis, biological evaluation and molecular modeling of 2-amino-2-phenylethanol derivatives as novel β2-adrenoceptor agonists. Bioorg Chem. 2018;79:155–162. doi: 10.1016/j.bioorg.2018.04.017
  • Yi C, Xing G, Wang S, et al. Design, synthesis and biological evaluation of 8-(2-amino-1-hydroxyethyl)-6-hydroxy-1,4-benzoxazine-3(4H)-one derivatives as potent β2-adrenoceptor agonists. Bioorg Med Chem. 2020;28(1):115178. doi: 10.1016/j.bmc.2019.115178
  • Shah SD, Lind C, De Pascali F, et al. In silico identification of a β2-adrenoceptor allosteric site that selectively augments canonical β2AR-Gs signaling and function. Proc Natl Acad Sci USA. 2022;119(49):e2214024119. doi: 10.1073/pnas.2214024119
  • Nussinov R, Tsai CJ. The different ways through which specificity works in orthosteric and allosteric drugs. Curr Pharm Des. 2012;18(9):1311–1316. doi: 10.2174/138161212799436377
  • Ahn S, Pani B, Kahsai AW, et al. Small-molecule positive allosteric modulators of the β2-adrenoceptor isolated from DNA-encoded libraries. Mol Pharmacol. 2018;94(2):850–861. doi: 10.1124/mol.118.111948
  • Ahn S, Maarsingh H, Walker JK, et al. Allosteric modulator potentiates β2AR agonist-promoted bronchoprotection in asthma models. J Clin Invest. 2023;133(18):e167337. doi: 10.1172/JCI167337
  • Wang J, Pani B, Gokhan I, et al. β-Arrestin-biased allosteric modulator potentiates carvedilol-stimulated β adrenergic receptor cardioprotection. Mol Pharmacol. 2021;100(6):568–579. doi: 10.1124/molpharm.121.000359
  • Pani B, Ahn S, Rambarat PK, et al. Unique positive cooperativity between the β-arrestin-biased β-blocker carvedilol and a small molecule positive allosteric modulator of the β2-adrenergic receptor. Mol Pharmacol. 2021;100(5):513–525. doi: 10.1124/molpharm.121.000363
  • Wisler JW, DeWire SM, Whalen EJ, et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc Natl Acad Sci, USA. 2007;104(42):16657–16662. doi: 10.1073/pnas.0707936104
  • O’Callaghan K, Kuliopulos A, Covic L. Turning receptors on and off with intracellular pepducins: new insights into G-protein-coupled receptor drug development. J Biol Chem. 2012;287(16):12787–12796. doi: 10.1074/jbc.R112.355461
  • Covic L, Gresser AL, Talavera J, et al. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci, USA. 2002;99(2):643–648. doi: 10.1073/pnas.022460899
  • Matera MG, Calzetta L, Cazzola M. β-Adrenoceptor modulation in chronic obstructive pulmonary disease: present and future perspectives. Drugs. 2013;73(15):1653–1663. doi: 10.1007/s40265-013-0120-5
  • Dickey BF, Walker JK, Hanania NA, et al. β-adrenoceptor inverse agonists in asthma. Curr Opin Pharmacol. 2010;10(3):254–259. doi: 10.1016/j.coph.2010.03.002
  • Jean-Charles PY, Kaur S, Shenoy SK. G protein-coupled receptor signaling through β-arrestin-dependent mechanisms. J Cardiovasc Pharmacol. 2017;70(3):142–158. doi: 10.1097/FJC.0000000000000482
  • R C 3rd, Schilling J, Song J, et al. β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc Natl Acad Sci U S A. 2016;113(28):E4107–E4116. doi: 10.1073/pnas.1606267113
  • Cazzola M, Rogliani P, Matera MG. Cardiovascular disease in patients with COPD. Lancet Respir Med. 2015;3(8):593–595. doi: 10.1016/S2213-2600(15)00279-9
  • Cazzola M, Rogliani P, Ora J, et al. Cardiovascular diseases or type 2 diabetes mellitus and chronic airway diseases: mutual pharmacological interferences. Ther Adv Chronic Dis. 2023;14:20406223231171556. doi: 10.1177/20406223231171556
  • Chen J, Liu J, Yuan Y, et al. Molecular mechanisms of diverse activation stimulated by different biased agonists for the β2-adrenergic receptor. J Chem Inf Model. 2022;62(21):5175–5192. doi: 10.1021/acs.jcim.1c01016
  • Bond RA, Garcia-Rojas EY L, Hegde A, et al. Therapeutic potential of targeting β-arrestin. Front Pharmacol. 2019;10:124. doi: 10.3389/fphar.2019.00124
  • Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev. 2019;28(154):190095. doi: 10.1183/16000617.0095-2019
  • Drake MT, Violin JD, Whalen EJ, et al. β-arrestin-biased agonism at the β2-adrenergic receptor. J Biol Chem. 2008;283(9):5669–5676. doi: 10.1074/jbc.M708118200
  • R C 3rd, Koziol-White C, Zhang J, et al. Interdicting Gq activation in airway disease by receptor-dependent and receptor-independent mechanisms. Mol Pharmacol. 2016;89(1):94–104. doi: 10.1124/mol.115.100339
  • Grisanti LA, Thomas TP, Carter RL, et al. Pepducin-mediated cardioprotection via β-arrestin-biased β2-adrenergic receptor-specific signaling. Theranostics. 2018;8(17):4664–4678. doi: 10.7150/thno.26619
  • Quoyer J, Janz JM, Luo J, et al. Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. Proc Natl Acad Sci, USA. 2013;110(52):E5088–E5097. doi: 10.1073/pnas.1312515110
  • Stanek M, Picard LP, Schmidt MF, et al. Hybridization of β-adrenergic agonists and antagonists confers G protein bias. J Med Chem. 2019;62(10):5111–5131. doi: 10.1021/acs.jmedchem.9b00349
  • Ippolito M, De Pascali F, Hopfinger N, et al. Identification of a β-arrestin-biased negative allosteric modulator for the β2-adrenergic receptor. Proc Natl Acad Sci, USA. 2023;120(31):e2302668120. doi: 10.1073/pnas.2302668120
  • De Pascali F, Ippolito M, Wolfe E, et al. β2-Adrenoceptor agonist profiling reveals biased signalling phenotypes for the β2-adrenoceptor with possible implications for the treatment of asthma. Br J Pharmacol. 2022;179(19):4692–4708. doi: 10.1111/bph.15900
  • Kim D, Tokmakova A, Lujan LK, et al. Identification and characterization of an atypical Gαs-biased β2AR agonist that fails to evoke airway smooth muscle cell tachyphylaxis. Proc Natl Acad Sci, USA. 2021;118(49):1–12. doi: 10.1073/pnas.2026668118
  • R C 3rd, Du Y, Quoyer J, et al. Development and characterization of pepducins as Gs-biased allosteric agonists. J Biol Chem. 2014;289(52):35668–35684. doi: 10.1074/jbc.M114.618819
  • Panettieri RA, Pera T, Liggett SB, et al. Pepducins as a potential treatment strategy for asthma and COPD. Curr Opin Pharmacol. 2018;40:120–125. doi: 10.1016/j.coph.2018.04.008
  • Cazzola M, Page C, Rogliani P, et al. Dual bronchodilation for the treatment of COPD: from bench to bedside. Br J Clin Pharmacol. 2022;88(8):3657–3673. doi: 10.1111/bcp.15390
  • Hughes AD, Jones LH. Dual-pharmacology muscarinic antagonist and β₂ agonist molecules for the treatment of chronic obstructive pulmonary disease. Future Med Chem. 2011;3(13):1585–1605. doi: 10.4155/fmc.11.106
  • Cazzola M, Lopez-Campos JL, Puente-Maestu L. The MABA approach: a new option to improve bronchodilator therapy. Eur Respir J. 2013;42(4):885–887. doi: 10.1183/09031936.00067013
  • Aparici M, Carcasona C, Ramos I, et al. Pharmacological preclinical characterization of LAS190792, a novel inhaled bifunctional muscarinic receptor antagonist/β2-adrenoceptor agonist (MABA) molecule. Pulm Pharmacol Ther. 2017;46:1–10. doi: 10.1016/j.pupt.2017.07.003
  • Koarai A, Sugiura H, Yamada M, et al. Treatment with LABA versus LAMA for stable COPD: a systematic review and meta-analysis. BMC Pulm Med. 2020;20(1):111. doi: 10.1186/s12890-020-1152-8
  • Steinfeld T, Hughes AD, Klein U, et al. THRX-198321 is a bifunctional muscarinic receptor antagonist and β2-adrenoceptor agonist (MABA) that binds in a bimodal and multivalent manner. Mol Pharmacol. 2011;79(3):389–399. doi: 10.1124/mol.110.069120
  • Ora J, Coppola A, Cazzola M, et al. Long-acting muscarinic antagonists under investigational to treat chronic obstructive pulmonary disease. J Exp Pharmacol. 2020;12:559–574. doi: 10.2147/JEP.S259330
  • Aparici M, Carcasona C, Ramos I, et al. Pharmacological profile of AZD8871 (LAS191351), a novel inhaled dual M3 receptor antagonist/β2-adrenoceptor agonist molecule with long-lasting effects and favorable safety profile. J Pharmacol Exp Ther. 2019;370(1):127–136. doi: 10.1124/jpet.118.255620
  • Matera MG, Rogliani P, Cazzola M. Navafenterol. Dual M3 receptor antagonist/β2-adrenoceptor agonist (MABA), treatment of chronic obstructive pulmonary disease. Drugs Future. 2022;47(10):725–736. doi: 10.1358/dof.2022.47.10.3461269
  • Singh D, Balaguer V, Astbury C, et al. Navafenterol (AZD8871) in patients with COPD: a randomized, double-blind, phase I study evaluating safety and pharmacodynamics of single doses of this novel, inhaled, long-acting, dual-pharmacology bronchodilator. Respir Res. 2020;21(Suppl 1):102. doi: 10.1186/s12931-020-01347-7
  • Singh D, Beier J, Astbury C, et al. The novel bronchodilator navafenterol: a phase 2a, multicentre, randomised, double-blind, placebo-controlled crossover trial in COPD. Eur Respir J. 2022;59(4):2100972. doi: 10.1183/13993003.00972-2021
  • Carzaniga L, Linney ID, Rizzi A, et al. Discovery of clinical candidate CHF-6366: a novel super-soft dual pharmacology muscarinic antagonist and β2 agonist (MABA) for the inhaled treatment of respiratory diseases. J Med Chem. 2022;65(15):10233–10250. doi: 10.1021/acs.jmedchem.2c00609
  • Ghiglieri A, Messina M, Cenacchi V, et al. ADME properties of CHF6366, a novel bi-functional M3 muscarinic receptor antagonist and β2 adrenoceptor agonist (MABA) radiolabelled at both functional moieties. Xenobiotica. 2023;53(4):288–308. doi: 10.1080/00498254.2023.2230490
  • Kots M, Singh D, Maison-Blanche P, et al. CHF 6366: a novel dual potent bronchodilator with antimuscarinic and beta2 agonist activity - results from the first-in-human healthy male volunteers trial. Am J Respir Crit Care Med. 2021;203:A2253.
  • Tsagaraki V, Amfilochiou A, Markantonis SL. Evidence of tachyphylaxis associated with salmeterol treatment of chronic obstructive pulmonary disease patients. Int J Clin Pract. 2006;60(4):415–421. doi: 10.1111/j.1368-5031.2006.00849.x
  • Scichilone N, Battaglia S, La Sala A, et al. Clinical implications of airway hyperresponsiveness in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(1):49–60. doi: 10.2147/copd.2006.1.1.49
  • Maarsingh H, Oldenburger A, Han B, et al. Effects of (a combination of) the beta2-adrenoceptor agonist indacaterol and the muscarinic receptor antagonist glycopyrrolate on intrapulmonary airway constriction. Cells. 2021;10(5):1237. doi: 10.3390/cells10051237
  • Scola AM, Loxham M, Charlton SJ, et al. The long-acting beta-adrenoceptor agonist, indacaterol, inhibits IgE-dependent responses of human lung mast cells. Br J Pharmacol. 2009;158(1):267–276. doi: 10.1111/j.1476-5381.2009.00178.x
  • Oehme S, Mittag A, Schrödl W, et al. Agonist-induced β2-adrenoceptor desensitization and downregulation enhance pro-inflammatory cytokine release in human bronchial epithelial cells. Pulm Pharmacol Ther. 2015;30:110–120. doi: 10.1016/j.pupt.2014.05.007
  • Walker JK, Penn RB, Hanania NA, et al. New perspectives regarding β2-adrenoceptor ligands in the treatment of asthma. Br J Pharmacol. 2011;163(1):18–28. doi: 10.1111/j.1476-5381.2010.01178.x
  • Nagi K, Onaran HO. Biased agonism at G protein-coupled receptors. Cell Signal. 2021;83:109981. doi: 10.1016/j.cellsig.2021.109981
  • Ortega VE. Pharmacogenetics of beta2 adrenergic receptor agonists in asthma management. Clin Genet. 2014;86(1):12–20. doi: 10.1111/cge.12377
  • Wasti B, Liu SK, Xiang XD. Role of epigenetics in the pathogenesis, treatment, prediction, and cellular transformation of asthma. Mediators Inflamm. 2021;2021:9412929. doi: 10.1155/2021/9412929
  • Tokmakova A, Kim D, Goddard WA 3rd, et al. Biased β-agonists favoring Gs over β-arrestin for individualized treatment of obstructive lung disease. JPM. 2022;12(3):331. doi: 10.3390/jpm12030331
  • Woodruff PG, Agusti A, Roche N, et al. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet. 2015;385(9979):1789–1798. doi: 10.1016/S0140-6736(15)60693-6
  • Cazzola M, Calzetta L, Rogliani P, et al. The challenges of precision medicine in COPD. Mol Diagn Ther. 2017;21(4):345–355. doi: 10.1007/s40291-017-0266-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.