47
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances in JAK2 inhibition for the treatment of myelofibrosis

&
Received 15 May 2024, Accepted 21 Jun 2024, Published online: 01 Jul 2024

References

  • Schieber M, Crispino JD, Stein B. Myelofibrosis in 2019: moving beyond JAK2 inhibition. Blood Cancer J. 2019 Sep 11;9(9):74. doi: 10.1038/s41408-019-0236-2
  • Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood. 2023 Apr 20;141(16):1909–1921. doi: 10.1182/blood.2022017578
  • Pasquier F, Cabagnols X, Secardin L, et al. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy. Clin Lymphoma Myeloma Leuk. 2014 Sep;14:SS23–S35. doi: 10.1016/j.clml.2014.06.014
  • Tefferi A, Lasho TL, Jimma T, et al. One thousand patients with primary myelofibrosis: the mayo clinic experience. Mayo Clin Proc. 2012 Jan;87(1):25–33. doi: 10.1016/j.mayocp.2011.11.001
  • Bose P, Verstovsek S. Prognosis of primary myelofibrosis in the genomic era. Clin Lymphoma Myeloma Leuk. 2016 Aug;16(Suppl):S105–13. doi: 10.1016/j.clml.2016.02.031
  • Tefferi A, Guglielmelli P, Lasho TL, et al. MIPSS70+ Version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. J Clin Oncol. 2018 Jun 10;36(17):1769–1770. doi: 10.1200/JCO.2018.78.9867
  • Duminuco A, Nardo A, Giuffrida G, et al. Myelofibrosis and survival prognostic models: a journey between past and future. J Clin Med. 2023 Mar 11;12(6):2188. doi: 10.3390/jcm12062188
  • Tefferi A. Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 2021 Jan;96(1):145–162. doi: 10.1002/ajh.26050
  • Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012 Mar 1;366(9):799–807. doi: 10.1056/NEJMoa1110557
  • Pardanani A, Tefferi A. How I treat myelofibrosis after failure of JAK inhibitors. Blood. 2018 Aug 2;132(5):492–500. doi: 10.1182/blood-2018-02-785923
  • Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016 Aug;30(8):1701–1707. doi: 10.1038/leu.2016.148
  • Newberry KJ, Patel K, Masarova L, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017 Aug 31;130(9):1125–1131. doi: 10.1182/blood-2017-05-783225
  • Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017 Sep 29;10(1):156. doi: 10.1186/s13045-017-0527-7
  • Pardanani A, Tefferi A, Masszi T, et al. Updated results of the placebo-controlled, phase III JAKARTA trial of fedratinib in patients with intermediate-2 or high-risk myelofibrosis. Br J Haematol. 2021 Oct;195(2):244–248. doi: 10.1111/bjh.17727
  • Pardanani A, Harrison C, Cortes JE, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol. 2015 Aug;1(5):643–651. doi: 10.1001/jamaoncol.2015.1590
  • Harrison CN, Schaap N, Vannucchi AM, et al. Fedratinib in patients with myelofibrosis previously treated with ruxolitinib: an updated analysis of the JAKARTA2 study using stringent criteria for ruxolitinib failure. Am J Hematol. 2020 Jun;95(6):594–603. doi: 10.1002/ajh.25777
  • Mascarenhas J, Hoffman R, Talpaz M, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol. 2018 May 1;4(5):652–659. doi: 10.1001/jamaoncol.2017.5818
  • Tremblay D, Mesa R, Scott B, et al. Pacritinib demonstrates spleen volume reduction in patients with myelofibrosis independent of JAK2V617F allele burden. Blood Adv. 2020 Dec 8;4(23):5929–5935. doi: 10.1182/bloodadvances.2020002970
  • A Phase 3 study of pacritinib in patients with primary myelofibrosis, post polycythemia vera myelofibrosis, or post-essential thrombocythemia myelofibrosis (PACIFICA) clinicaltrials gov. [cited Updated 2024 Apr 5; cited 2024 Apr 27]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03165734
  • Tefferi A, Pardanani A. Momelotinib for myelofibrosis: our 14 years of experience with 100 clinical trial patients and recent FDA approval. Blood Cancer J. 2024 Mar 18;14(1):47. doi: 10.1038/s41408-024-01029-3
  • Mesa RA, Kiladjian JJ, Catalano JV, et al. SIMPLIFY-1: A Phase III randomized trial of momelotinib versus ruxolitinib in janus kinase inhibitor-naive patients with myelofibrosis. J Clin Oncol. 2017 Dec 1;35(34):3844–3850. doi: 10.1200/JCO.2017.73.4418
  • Harrison CN, Vannucchi AM, Platzbecker U, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 2018 Feb;5(2):e73–e81. doi: 10.1016/S2352-3026(17)30237-5
  • Mesa R, Harrison C, Oh ST, et al. Overall survival in the SIMPLIFY-1 and SIMPLIFY-2 phase 3 trials of momelotinib in patients with myelofibrosis. Leukemia. 2022 Sep;36(9):2261–2268. doi: 10.1038/s41375-022-01637-7
  • Verstovsek S, Gerds AT, Vannucchi AM, et al. Momelotinib versus danazol in symptomatic patients with anaemia and myelofibrosis (MOMENTUM): results from an international, double-blind, randomised, controlled, phase 3 study. Lancet. 2023 Jan 28;401(10373):269–280. doi: 10.1016/S0140-6736(22)02036-0
  • Asshoff M, Petzer V, Warr MR, et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood. 2017 Mar 30;129(13):1823–1830. doi: 10.1182/blood-2016-09-740092
  • Lee SS, Verstovsek S, Pemmaraju N. Novel therapies in myeloproliferative neoplasms: beyond JAK inhibitormonotherapy. J Immunother Precis Oncol. 2021 Aug;4(3):117–128. doi: 10.36401/JIPO-20-35
  • Zhang Y, Zhou H, Duan M, et al. Safety and efficacy of jaktinib (a novel JAK inhibitor) in patients with myelofibrosis who are intolerant to ruxolitinib: a single-arm, open-label, phase 2, multicenter study. Am J Hematol. 2023 Oct;98(10):1588–1597. doi: 10.1002/ajh.27033
  • Zhang Y, Zhou H, Jiang Z, et al. Safety and efficacy of jaktinib in the treatment of Janus kinase inhibitor-naive patients with myelofibrosis: results of a phase II trial. Am J Hematol. 2022 Dec;97(12):1510–1519. doi: 10.1002/ajh.26709
  • Jin J, Zhang Y, Zhang Q, et al. Jaktinib in patients (pts) with myelofibrosis (MF) who were refractory to or relapsed after ruxolitinib: a single-arm, open-label, multicenter, phase 2 study. JCO. 2023 May 31;41(16_suppl):7062–7062. doi: 10.1200/JCO.2023.41.16_suppl.7062
  • Zhang Y, Zhou H, Zhuang J, et al. S212: a randomized double-blind phase 3 study of jaktinib versus hydroxyurea in patients with intermediate-2 or high risk myelofibrosis. Hemasphere. 2023;7(S3):e7077553. doi: 10.1097/01.HS9.0000967760.70775.53
  • Xu Z, Pan L, Hong Z, et al. First-in-Class JAK/Rock Inhibitor rovadicitinib in myeloproliferative neoplasms: a single arm, multicenter, open-label, phase I/Ib Study. Blood. 2023 Nov 28;142(Supplement 1):1829. doi: 10.1182/blood-2023-178956
  • A clinical trial of tq05105 tablets in the treatment of moderate and high risk myelofibrosis. Available from: www.classic.clinicaltrials.gov/ct2/show/NCT05020652
  • Koppikar P, Bhagwat N, Kilpivaara O, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012 Sep 6;489(7414):155–159. doi: 10.1038/nature11303
  • Meyer SC, Keller MD, Chiu S, et al. CHZ868, a Type II JAK2 inhibitor, reverses type I JAK inhibitor persistence and demonstrates efficacy in myeloproliferative neoplasms. Cancer Cell. 2015 Jul 13;28(1):15–28. doi: 10.1016/j.ccell.2015.06.006
  • Rai S, Stetka J, Usart M, et al. The second generation type II JAK2 Inhibitor, AJ1-10502, demonstrates enhanced selectivity, improved therapeutic efficacy and reduced mutant cell fraction compared to Type I JAK2 inhibitors in models of myeloproliferative neoplasms (MPNs). Blood. 2022 Nov 15;140:6722–6723. doi: 10.1182/blood-2022-162621
  • Stubbs MC, Celik H, Ai Y, et al. Preclinical Evaluation of INCB160058 - a novel and potentially disease-modifying therapy for JAK2V617F mutant myeloproliferative neoplasms. Blood. 2023 Nov 28;142:860. doi: 10.1182/blood-2023-179369
  • Papadopoulos N, Pristavec A, Nedelec A, et al. Modulation of human thrombopoietin receptor conformations uncouples JAK2 V617F-driven activation from cytokine-induced stimulation. Blood. 2023 Nov 23;142(21):1818–1830. doi: 10.1182/blood.2022019580
  • A study to evaluate the safety, tolerability, and pharmacokinetics of INCB160058 when administered orally to healthy adult participant clinicaltrials gov. [cited 2024 Mar 21]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT06213818
  • Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell. 2014 Jun 5;54(5):728–736. doi: 10.1016/j.molcel.2014.05.016
  • Kleppe M, Koche R, Zou L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018 Jan 8;33(1):29–43 e7. doi: 10.1016/j.ccell.2017.11.009
  • Mascarenhas J, Kremyanskaya M, Patriarca A, et al. MANIFEST: pelabresib in combination with ruxolitinib for janus kinase inhibitor treatment-naive myelofibrosis. J Clin Oncol. 2023 Nov 10;41(32):4993–5004. doi: 10.1200/JCO.22.01972
  • Kremyanskaya M, Harrison C, Bose P, et al. P1018: updated results from manifest arm 2: efficacy and safety of pelabresib (CPI-0610) as add-on to ruxolitinib in myelofibrosis. Hemasphere. 2023;7(S3):e0578580. doi: 10.1097/01.HS9.0000970976.05785.80
  • Rampal RK, Grosicki S, Chraniuk D, et al. Pelabresib in combination with ruxolitinib for janus kinase inhibitor treatment-naïve patients with myelofibrosis: results of the manifest-2 randomized, double-blind, phase 3 Study. In: 65th ASH Annual Meeting and Exposition. 2023 Nov 28; San Diego (CA): Blood. p. 628.
  • Harrison CN, Gupta VK, Gerds AT, et al. Phase III Rr treaRtment-naive myelofibrosis. Future Oncol. 2022 Sep;18(27):2987–2997. doi: 10.2217/fon-2022-0484
  • Greider CW. Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):90–92. doi: 10.1073/pnas.95.1.90
  • Bernard L, Belisle C, Mollica L, et al. Telomere length is severely and similarly reduced in JAK2V617F-positive and -negative myeloproliferative neoplasms. Leukemia. 2009 Feb;23(2):287–291. doi: 10.1038/leu.2008.319
  • Wang X, Hu CS, Petersen B, et al. Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells. Blood Adv. 2018 Sep 25;2(18):2378–2388. doi: 10.1182/bloodadvances.2018022012
  • Mascarenhas J, Komrokji RS, Palandri F, et al. Randomized, single-blind, multicenter Phase II study of two doses of imetelstat in relapsed or refractory myelofibrosis. J Clin Oncol. 2021 Sep 10;39(26):2881–2892. doi: 10.1200/JCO.20.02864
  • Mascarenhas J, Harrison CN, Kiladjian JJ, et al. Imetelstat in intermediate-2 or high-risk myelofibrosis refractory to JAK inhibitor: IMpactMF phase III study design. Future Oncol. 2022 Jul;18(22):2393–2402. doi: 10.2217/fon-2022-0235
  • Hu CS, Huang F, Hoffman H, et al. Combination Treatment with imetelstat, a telomerase inhibitor, and ruxolitinib depletes myelofibrosis hematopoietic stem cells and progenitor cells. Blood. 2019 Nov 13;134(Supplement_1):2963. doi: 10.1182/blood-2019-126189
  • A Study to Evaluate the Safety, Pharmacokinetics, Pharmacodynamics and Clinical Activity of Imetelstat in Combination with Ruxolitinib in Participants with Myelofibrosis ClinicalTrials gov. [cited 2023 Dec 11]. Available from: https://clinicaltrials.gov/ct2/show/NCT05371964
  • Tse C, Shoemaker AR, Adickes J, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008 May 1;68(9):3421–3428. doi: 10.1158/0008-5472.CAN-07-5836
  • Petiti J, Lo Iacono M, Rosso V, et al. Bcl-xL represents a therapeutic target in Philadelphia negative myeloproliferative neoplasms. J Cell Mol Med. 2020 Sep;24(18):10978–10986. doi: 10.1111/jcmm.15730
  • Pemmaraju N, Garcia JS, Potluri J, et al. Addition of navitoclax to ongoing ruxolitinib treatment in patients with myelofibrosis (REFINE): a post-hoc analysis of molecular biomarkers in a phase 2 study. Lancet Haematol. 2022 Jun;9(6):e434–e444. doi: 10.1016/S2352-3026(22)00116-8
  • Waibel M, Solomon VS, Knight DA, et al. Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors. Cell Rep. 2013 Nov 27;5(4):1047–1059. doi: 10.1016/j.celrep.2013.10.038
  • Harrison CN, Garcia JS, Somervaille TCP, et al. Addition of navitoclax to ongoing ruxolitinib therapy for patients with myelofibrosis with progression or suboptimal response: phase II safety and efficacy. J Clin Oncol. 2022 May 20;40(15):1671–1680. doi: 10.1200/JCO.21.02188
  • Pemmaraju N, Mead AJ, Somervaille TC, et al. Transform-1: a randomized, double-blind, placebo-controlled, multicenter, international phase 3 study of navitoclax in combination with ruxolitinib versus ruxolitinib plus placebo in patients with untreated myelofibrosis. In: 65th ASH Annual Meeting and Exposition; 2023 Nov 28; San Diego (CA): blood; 2023. p. 620.
  • Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell. 2006 Feb 3;21(3):307–315. doi: 10.1016/j.molcel.2006.01.020
  • Lu M, Wang X, Li Y, et al. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-alpha 2a specifically targets JAK2V617F-positive polycythemia vera cells. Blood. 2012 Oct 11;120(15):3098–3105. doi: 10.1182/blood-2012-02-410712
  • Nakatake M, Monte-Mor B, Debili N, et al. JAK2(V617F) negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene. 2012 Mar 8;31(10):1323–1333. doi: 10.1038/onc.2011.313
  • Clevenger T, Cheung J, Krantz F, et al. Adding navtemadlin (nvtm) to ruxolitinib (rux) potentiates apoptosis in myeloblasts from patients with myelofibrosis. EHA 2023 Hybrid Congress. Hemasphere. 2023 Aug;7(S3):1882–1883. doi: 10.1097/01.HS9.0000970868.28141.7f
  • Mascarenhas J, Jain T, Otoukesh S, et al. An open-label, global, phase (Ph) 1b/2 study adding navtemadlin (NVTM) to ruxolitinib (RUX) in patients (Pts) with primary or secondary myelofibrosis (MF) who have a suboptimal response to RUX. Hemasphere. 2023 Aug;7(S3):248–250. doi: 10.1097/01.HS9.0000967752.72578.ff
  • Muqbil I, Kauffman M, Shacham S, et al. Understanding XPO1 target networks using systems biology and mathematical modeling. Curr Pharm Des. 2014;20(1):56–65. doi: 10.2174/13816128113199990611
  • Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 - from biology to targeted therapy. Nat Rev Clin Oncol. 2021 Mar;18(3):152–169. doi: 10.1038/s41571-020-00442-4
  • Lu M, Xia L, Hoffman R. Use of combination therapies including the XPO1 inhibitor selinexor in is a potential effective therapeutic strategy to treat myelofibrosis patients. Blood. 2023 Nov 2;142(Supplement 1):1792. doi: 10.1182/blood-2023-186674
  • Maloof ME, Wu S, Ellero A, et al. Activity of selinexor as a single agent and synergistic activity with approved/investigational myelofibrosis therapies in vitro. Blood. 2023 Nov 2;142(Supplement 1):6353. doi: 10.1182/blood-2023-180134
  • Ali H, Kishtagari A, Maher KR, et al. Selinexor (SEL) plus ruxolitinib (RUX) in JAK inhibitor (JAKi) treatment-naïve patients with myelofibrosis: Updated results from XPORT-MF-034. J Clin Oncol. 2023 May 31;41(16_suppl):7063–7063. doi: 10.1200/JCO.2023.41.16_suppl.7063
  • Rosa K. FDA grants fast track status to selinexor for myelofibrosis: OncLive. [cited 2023 Jul 19]. Available from: www.onclive.com/view/fda-grants-fast-track-status-to-selinexor-for-myelofibrosis
  • Chagraoui H, Komura E, Tulliez M, et al. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002 Nov 15;100(10):3495–3503. doi: 10.1182/blood-2002-04-1133
  • Fenaux P, Kiladjian JJ, Platzbecker U. Luspatercept for the treatment of anemia in myelodysplastic syndromes and primary myelofibrosis. Blood. 2019 Feb 21;133(8):790–794. doi: 10.1182/blood-2018-11-876888
  • Gerds AT, Mesa RA, Tkacz J, et al. Anemia and transfusion dependency are important prognostic factors for overall survival in patients with myelofibrosis: results of a real-world analysis of medicare patients. Blood. 2023;142(Supplement 1):6418. doi: 10.1182/blood-2023-178012
  • Gerds AT, Harrison C, Kiladjian JJ, et al. Efficacy and safety of luspatercept for the treatment of anemia in patients with myelofibrosis: results from the ACE-536-MF-001 study. Hemasphere. 2023;7(S3):e0882611. doi: 10.1097/01.HS9.0000967580.08826.11
  • Kiladjian JJ, Harrison C, Mesa RA, et al. MPN-346 Independence: enrolling Phase III Trial to Study the Efficacy and Safety of Luspatercept versus placebo in patients with myelofibrosis on JAK2 Inhibitor (JAK2i) Therapy Requiring Red Blood Cell Transfusions (RBCTs). Clin Lymphoma Myeloma Leukemia. 2023 Sep;23:S390. doi: 10.1016/S2152-2650(23)01234-X
  • Masarova L, Bose P, Pemmaraju N, et al. Improved survival of patients with myelofibrosis in the last decade: single-center experience. Cancer. 2022 Apr 15;128(8):1658–1665. doi: 10.1002/cncr.34103
  • Szuber N, Mudireddy M, Nicolosi M, et al. 3023 mayo clinic patients with myeloproliferative neoplasms: risk-stratified comparison of survival and outcomes data among disease subgroups. Mayo Clin Proc. 2019 Apr;94(4):599–610. doi: 10.1016/j.mayocp.2018.08.022
  • Harrison C, Kiladjian JJ, Verstovsek S, et al. Overall Survival (OS) and Progression-Free Survival (PFS) in Patients Treated with Fedratinib as First-Line Myelofibrosis (MF) therapy and after prior ruxolitinib (RUX): Results from the JAKARTA and JAKARTA2 Trials. Clin Lymphoma Myeloma Leukemia. 2021 Sep;21:S356. doi: 10.1016/S2152-2650(21)01822-X
  • Ajufo H, Bewersdorf JP, Harrison C, et al. Spleen volume reduction (SVR) predicts overall survival (OS) in myelofibrosis (MF) patients on pacritinib (PAC) but not best available therapy (BAT): PERSIST-2 landmark OS analysis. JCO. 2023 May 31;41(16_suppl):7018–7018. doi: 10.1200/JCO.2023.41.16_suppl.7018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.