65
Views
0
CrossRef citations to date
0
Altmetric
Drug Evaluation

Evaluating bexicaserin for the treatment of developmental epileptic encephalopathies

, , , , , ORCID Icon & show all
Pages 1121-1130 | Received 13 May 2024, Accepted 24 Jun 2024, Published online: 28 Jun 2024

References

  • Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51(6):1069–1077. doi: 10.1111/j.1528-1167.2009.02397.x
  • Fattorusso A, Matricardi S, Mencaroni E, et al. The pharmacoresistant epilepsy: an overview on existant and new emerging therapies. Front Neurol. 2021;12:674483. doi: 10.3389/fneur.2021.674483 PMID: 34239494; PMCID: PMC8258148.
  • Dini G, Tulli E, Dell’isola GB, et al. Improving therapy of pharmacoresistant epilepsies: the role of fenfluramine. Front Pharmacol. 2022;13:832929. doi: 10.3389/fphar.2022.832929
  • Dell’isola GB, Verrotti A, Sciaccaluga M, et al. Cannabidiol: metabolism and clinical efficacy in epileptic patients. Expert Opin Drug Metab Toxicol. 2024 Mar;20(3):119–131. doi: 10.1080/17425255.2024.2329733 Epub 2024 Mar 12. PMID: 38465404.
  • Operto FF, Pastorino GMG, Viggiano A, et al. Epilepsy And cognitive impairment in childhood and adolescence: a mini-review. Curr Neuropharmacol. 2023;21:1646–1665. doi: 10.2174/1570159X20666220706102708 PMID: 35794776; PMCID: PMC10514538.
  • Bonnycastle DD, Giarman NJ, Paasonen MK. Anticonvulsant compounds and 5-hydroxytryptamine in rat brain. Br J Pharmacol Chemother. 1957;12(2):228–231. doi: 10.1111/j.1476-5381.1957.tb00125.x PMID: 13446378; PMCID: PMC1509665.
  • Sourbron J, Lagae L. Serotonin receptors in epilepsy: novel treatment targets? Epilepsia Open. 2022;7(2):231–246. doi: 10.1002/epi4.12580 Epub 2022 Feb 2. PMID: 35075810; PMCID: PMC9159250.
  • Jobe PC, Browning RA. The serotonergic and noradrenergic effects of antidepressant drugs are anticonvulsant, not proconvulsant. Epilepsy Behav. 2005 Dec;7(4):602–619. doi: 10.1016/j.yebeh.2005.07.014 Epub 2005 Oct 5. PMID: 16169281.
  • Gilliam FG, Hecimovic H, Gentry MS. Serotonergic therapy in epilepsy. Curr Opin Neurol. 2021;34:206–212. doi: 10.1097/WCO.0000000000000901 PMID: 33664206; PMCID: PMC8478129.
  • Longboard Pharma. Pipeline. LP532. A 5-HT2c superagonist. [cited 2024 Jun 27]. Available from: https://www.longboardpharma.com/pipeline/
  • Hoffman BJ, Mezey E. Distribution of serotonin 5-HT1C receptor mRNA in adult rat brain. FEBS Lett. 1989;247(2):453–462. doi: 10.1016/0014-5793(89)81390-0
  • Molineaux SM, Jessell TM, Axel R, et al. 5-HT1c receptor is a prominent serotonin receptor subtype in the central nervous system. Proc Natl Acad Sci, USA. 1989;86(17):6793–6797. doi: 10.1073/pnas.86.17.6793
  • Sheldon PW, Aghajanian GK. Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: Evidence for mediation by 5-HT 1C receptors in pyramidal cells and 5-HT 2 receptors in interneurons. Synapse. 1991;9(3):208–218. doi: 10.1002/syn.890090307
  • Rick CE, Stanford IM, Lacey MG. Excitation of rat substantia nigra pars reticulata neurons by 5-hydroxytryptamine in vitro, evidence for a direct action mediated by 5-hydroxytryptamine2C receptors. Neuroscience. 1995;69(3):903–913. doi: 10.1016/0306-4522(95)00283-O
  • Sharma A, Punhani T, Fone KCF. Distribution of the 5- hydroxytryptamine2C receptor protein in adult rat brain and spinal cord determined using a receptor-directed antibody, effect of 5,7- dihydroxytryptamine. Synapse. 1997;27(1):45–56. doi: 10.1002/(SICI)1098-2396(199709)27:1<45:AID-SYN5>3.0.CO;2-D
  • Behr J, Lyson KJ, Mody I. Enhanced propagation of epileptiform activity through the kindled dentate gyrus. J Neurophysiol. 1998;79(4):1726–1732. doi: 10.1152/jn.1998.79.4.1726
  • Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325–340. doi: 10.1016/s0896-6273(02)00586-x PMID: 11832222.
  • Steinbusch HW. Distribution of serotonin-immunoreactivity in the central nervous system of the rat—Cell bodies and terminals. Neuroscience. 1981;6(4):557–618. doi: 10.1016/0306-4522(81)90146-9 PMID: 7017455.
  • Tecott LH, Logue SF, Wehner JM, et al. Perturbed dentate gyrus function in serotonin 5-HT2C receptor mutant mice. Proc Natl Acad Sci U S A. 1998;95:15026–15031. doi: 10.1073/pnas.95.25.15026 PMID: 9844009; PMCID: PMC24569.
  • Daily JW, Yan QS, Mishra PK, et al. Effects of fluoxetine on Convulsions and on brain serotonin as detected by microdialysis in genetically epilepsy-prone rats. J Pharmacol Exp Ther. 1992;260(2):533–540.
  • Przegalinski E, Baran L, Siwanowicz J. Role of 5-hydroxytryptamine receptor subtypes in the 1-[3-(trifluoromethyl)phenyl] piperazine-induced increase in threshold for maximal electroconvulsions in mice. Epilepsia. 1994;35(4):889–894. doi: 10.1111/j.1528-1157.1994.tb02528.x
  • Wada Y, Shiraishi J, Nakamura M, et al. Role of serotonin receptor subtypes in the development of amygdaloid kindling in rats. Brain Res. 1997;747:338–342. doi: 10.1016/s0006-8993(96)01322-4 PMID: 9046012.
  • Gerber K, Filakovszky J, Bagdy G, et al. The 5-HT1A agonist 8-OH-DPAT increases the number of spike wave discharges in a genetic rat model of absence epilepsy. Brain Research. 1998;807(1–2):807 243–2.5. doi: 10.1016/S0006-8993(98)00801-4
  • Filakovszky J, Gerber K, Bagdy G. A serotonin-1A receptor agonist and an N-methyl-D-aspartate receptor antagonist oppose each others effects in a genetic rat epilepsy model. Neurosci Lett. 1999;261(1–2):89–92. doi: 10.1016/S0304-3940(99)00015-4
  • Applegate CD, Tecott LH. Global increases in seizure susceptibility in mice lacking 5-HT2C receptors, a behavioral analysis. Exp Neurol. 1998;154(2):522–530. doi: 10.1006/exnr.1998.6901
  • Heisler LK, Chu HM, Tecott LH. Epilepsy and obesity in serotonin 5-HT2C receptor mutant mice. Ann N Y Acad Sci. 1998;861:74–78. doi: 10.1111/j.1749-6632.1998.tb10175.x PMID: 9928241.
  • Krishnakumar A, Nandhu MS, Paulose CS. Upregulation of 5-HT2C receptors in hippocampus of pilocarpine-induced epileptic rats: antagonism by Bacopa monnieri. Epilepsy Behav. 2009;16:225–230. doi: 10.1016/j.yebeh.2009.07.031 Epub 2009 Aug 22. PMID: 19700373.
  • Prendiville S, Gale K. Anticonvulsant effect of fluoxetine on focally evoked limbic motor seizures in rats. Epilepsia. 1993;34(2):381–384. doi: 10.1111/j.1528-1157.1993.tb02425.x
  • Yan QS, Jobe PC, Cheong JH, et al. Role of serotonin in the anticonvulsant effect of fluoxetine in genetically epilepsy-prone rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 1994;350(2):149–152. doi: 10.1007/BF00241089
  • Gobert A, Rivet J, Lejeune F, et al. Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic pathways, a combined dialysis and electrophysiological analysis in the rat. Synapse. 2000;36(3):205–221. doi: 10.1002/(SICI)1098-2396(20000601)36:3<205:AID-SYN5>3.0.CO;2-D
  • Hutson PH, Barton CL, Jay M, et al. Activation of mesolimbic dopamine function by phencyclidine is enhanced by 5-HT(2C/2B) receptor antagonists, neurochemical and behavioural studies. Neuropharmacology. 2000;39(12):2318–2328. doi: 10.1016/S0028-3908(00)00089-7
  • Carvajal A, García Del Pozo J, Martín de Diego I, et al. Efficacy of fenfluramine and dexfenfluramine in the treatment of obesity: a meta-analysis. Methods Find Exp Clin Pharmacol. 2000;22(5):285–290. doi: 10.1358/mf.2000.22.5.796647 PMID: 11031729.
  • Erenburg N, Perucca E, Bechard J, et al. Stereoselective analysis of the antiseizure activity of fenfluramine and norfenfluramine in mice: is l-norfenfluramine a better follow-up compound to racemic-fenfluramine? Int J Mol Sci. 2024;25:2522. doi: 10.3390/ijms25052522 PMID: 38473769; PMCID: PMC10932186.
  • Zhang Y, Kecskés A, Copmans D, et al. Pharmacological characterization of an antisense knockdown zebrafish model of Dravet syndrome: inhibition of epileptic seizures by the serotonin agonist fenfluramine. PLOS ONE. 2015;10(5):e0125898. doi: 10.1371/journal.pone.0125898 PMID: 25965391; PMCID: PMC4428833.
  • Sourbron J, Smolders I, de Witte P, et al. Pharmacological analysis of the anti-epileptic mechanisms of fenfluramine in scn1a mutant zebrafish. Front Pharmacol. 2017;8:191. PMID: 28428755; PMCID: PMC5382218. doi: 10.3389/fphar.2017.00191
  • Sourbron J, Schneider H, Kecskés A, et al. Serotonergic modulation as effective treatment for dravet syndrome in a zebrafish mutant model. ACS Chem Neurosci. 2016 May 18;7(5):588–598. doi: 10.1021/acschemneuro.5b00342 Epub 2016 Feb 17. PMID: 26822114.
  • Tiraboschi E, Martina S, van der Ent W, et al. New insights into the early mechanisms of epileptogenesis in a zebrafish model of Dravet syndrome. Epilepsia. 2020;61(3):549–560. Wada, Y. Shiraishi, J. Nakamura, M. Koshino, Y. Role of serotonin receptor subtypes in the development of amygdaloid kindling in rats. Brain Res. 1997;747:338-342. doi: 10.1111/epi.16456
  • Cha J, Filatov G, Smith SJ, et al. Fenfluramine increases survival and reduces markers of neurodegeneration in a mouse model of Dravet syndrome. Epilepsia Open. 2024;9(1):300–313. doi: 10.1002/epi4.12873 Epub 2023 Dec 22. PMID: 38018342; PMCID: PMC10839300.
  • Tupal S, Faingold CL. Serotonin 5-HT4 receptors play a critical role in the action of fenfluramine to block seizure-induced sudden death in a mouse model of SUDEP. Epilepsy Res. 2021;177:106777. PMID: 34601387. doi: 10.1016/j.eplepsyres.2021.106777
  • Sourbron J, Lagae L. Fenfluramine: a plethora of mechanisms? Front Pharmacol. 2023;14:1192022. PMID: 37251322; PMCID: PMC10213522. doi: 10.3389/fphar.2023.1192022
  • Lagae L, Sullivan J, Knupp K, et al. Fenfluramine hydrochloride for the treatment of seizures in dravet syndrome: a randomised, double‐blind, placebo‐controlled trial. Lancet. 2019;394(10216):2243–2254. doi: 10.1016/S0140-6736(19)32500-0
  • Nabbout R, Mistry A, Zuberi S, et al. Fenfluramine for treatment-resistant seizures in patients with Dravet syndrome receiving stiripentol-inclusive regimens: a randomized clinical trial. JAMA Neurol. 2020;77(3):300–308. doi: 10.1001/jamaneurol.2019.4113 PMID: 31790543; PMCID: PMC6902175.
  • Sullivan J, Lagae L, Cross JH, et al. Fenfluramine in the treatment of Dravet syndrome: results of a third randomized, placebo‐controlled clinical trial. Epilepsia. 2023;1–14. doi: 10.1111/epi.17737
  • Bishop KI, Isquith PK, Gioia GA, et al. Improved everyday executive functioning following profound reduction in seizure frequency with fenfluramine: analysis from a phase 3 long‐term extension study in children/young adults with Dravet syndrome. Epilepsy Behav. 2021;121:108024. doi: 10.1016/j.yebeh.2021.108024
  • Lagae L, Schoonjans AS, Gammaitoni AR, et al. A pilot, open-label study of the effectiveness and tolerability of low-dose ZX008 (fenfluramine HCl) in Lennox-Gastaut syndrome. Epilepsia. 2018;59(10):1881–1888. PMID: 30146701. doi: 10.1111/epi.14540
  • Knupp KG, Scheffer IE, Ceulemans B, et al. Efficacy and safety of fenfluramine for the treatment of seizures associated with lennox-gastaut syndrome: a randomized clinical trial. JAMA Neurol. 2022;79(6):554–564. PMID: 35499850; PMCID: PMC9062770. doi: 10.1001/jamaneurol.2022.0829
  • Shen RY, Andrade R. 5-Hydroxytryptamine2 receptor facilitates GABAergic neurotransmission in rat hippocampus. J Pharmacol Exp Ther. 1998;285(2):805–812. PMID: 9580630.
  • Martin P, de Witte PAM, Maurice T, et al. Fenfluramine acts as a positive modulator of sigma-1 receptors. Epilepsy Behav. 2020;105:106989. PMID: 32169824. doi: 10.1016/j.yebeh.2020.106989
  • Gustafson A, King C, Rey JA. Lorcaserin (Belviq): a selective serotonin 5-HT2C agonist in the treatment of obesity. P T. 2013 Sep;38(9):525–534. PMID: 24273398; PMCID: PMC3828930. Heisler, L. K. Chu, H. M. Tecott, L.H. Epilepsy and obesity inserotonin 5-HT2C receptor mutant mice. Ann N.Y Acad Sci. USA,1998;861:74-78. doi: 10.1111/j.1749-6632.1998.tb10175.x
  • Mazza M, Kotzalidis GD, Marano G, et al. Lorcaserin: worthy of further insights? Results from recent research. CNS Neurol Disord Drug Targets. 2024;23(3):278–283. doi: 10.2174/1871527322666230330124137 PMID: 37005521.
  • Higgins GA, Silenieks LB, Patrick A, et al. Studies to examine potential tolerability differences between the 5-HT2C receptor selective agonists lorcaserin and CP-809101. ACS Chem Neurosci. 2017;8:1074–1084. doi: 10.1021/acschemneuro.6b00444 Epub 2017 Mar 24. PMID: 28338324.
  • Berg KA, Dunlop J, Sanchez T, et al. A Conservative, Single-Amino Acid Substitution in the Second Cytoplasmic Domain of the Human Serotonin 2C Receptor Alters Both Ligand-Dependent and -Independent Receptor Signaling. J Pharmacol Exp Ther. 2008;324(3):1084–1092. doi: 10.1124/jpet.107.131524
  • Berg KA, Clarke WP, Sailstad C, et al. Maayani Signal transduction differences between 5-hydroxytryptamine type 2A and type 2C receptor systems. Mol Pharmacol. 1994;46:477–484.
  • Thomsen WJ, Grottick AJ, Menzaghi F, et al. Lorcaserin, a novel selective human 5-Hydroxytryptamine 2C agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther. 2008;325(2):577–587. doi: 10.1124/jpet.107.133348
  • Canal CE, Booth RG, Morgan D. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model. Neuropharmacology. 2013;70:112–121. doi: 10.1016/j.neuropharm.2013.01.007
  • Halberstadt AL, van der Heijden I, Ruderman MA, et al. 5-HT(2A) and 5-HT(2C) receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology. 2009;34(8):1958–1967. doi: 10.1038/npp.2009.29
  • Fletcher PJ, Tampakeras M, Sinyard J, et al. Characterizing the effects of 5-HT2C receptor ligands on motor activity and feeding behaviour in 5-HT2C receptor knockout mice neuropharmacology. Neuropharmacology. 2009;57(3):259–267. doi: 10.1016/j.neuropharm.2009.05.011
  • Higgins GA, Silenieks LB, Rossmann A, et al. The 5-HT2C receptor agonist lorcaserin reduces nicotine self-administration, discrimination, and reinstatement: relationship to feeding behavior and impulse control. Neuropsychopharmacology. 2012;37(5):1177–1191. doi: 10.1038/npp.2011.303
  • Jacobs BL. An animal behavior model for studying central serotonergic synapses life science. Life Sci. 1976;19(6):777–785. doi: 10.1016/0024-3205(76)90303-9
  • Fantegrossi S, Simoneau, Cohen J, et al. Interaction of 5-HT 2A and 5-HT 2C receptors in R (−)-2,5-dimethoxy-4-iodoamphetamine-elicited head twitch behavior in Mice. J Pharmacol Exp Ther. 2010;335(3):728–734. doi: 10.1124/jpet.110.172247
  • De Deurwaerdere P, Ramos M, Bharatiya R, et al. Lorcaserin bidirectionally regulates dopaminergic function site-dependently and disrupts dopamine brain area correlations in rats. Neuropharmacology. 2020;166:107915. doi: 10.1016/j.neuropharm.2019.107915
  • Di Giovanni G, Bharatiya R, Puginier E, et al. Lorcaserin alters serotonin and noradrenaline tissue content and their interaction with dopamine in the rat brain. Front Pharmacol. 2020;11:962. doi: 10.3389/fphar.2020.00962
  • Griffin A, Hamling KR, Knupp K, et al. Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome. Brain. 2017;140:669–683. doi: 10.1093/brain/aww342 PMID: 28073790; PMCID: PMC6075536.
  • Tolete P, Knupp K, Karlovich M, et al. Lorcaserin therapy for severe epilepsy of childhood onset: a case series. Neurology. 2018;91(18):837–839. doi: 10.1212/WNL.0000000000006432
  • Venzi M, David F, Bellet J, et al. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures. Neuropharmacology. 2016;108:292–304. doi: 10.1016/j.neuropharm.2016.04.016 Epub 2016 Apr 13. PMID: 27085605; PMCID: PMC4920646.
  • Silenieks LB, Carroll NK, Van Niekerk A, et al. Evaluation of selective 5-HT 2C agonists in acute seizure models. ACS Chem Neurosci. 2019;10(7):3284–3295. doi: 10.1021/acschemneuro.8b00739
  • Catterall WA. Dravet syndrome: a sodium channel interneuronopathy. Curr Opin Physiol. 2018;2:42–50. doi: 10.1016/j.cophys.2017.12.007 Epub 2017 Dec 23. PMID: 30123852; PMCID: PMC6091224.
  • Bialer M, Perucca E. Lorcaserin for dravet syndrome: a potential advance over fenfluramine? CNS Drugs. 2022;36(2):113–122. doi: 10.1007/s40263-022-00896-3 Epub 2022 Jan 30. PMID: 35094259.
  • Parasrampuria D, Mills I, O‘connell G, et al. Single ascending dose pharmacokinetics (PK), pharmacodynamics (PD), and tolerability of LP352 in healthy subjects (P14-8.001). Neurology [Internet]. 2022;98(18_supplement):1750. doi: 10.1212/WNL.98.18_supplement.1750
  • Wold EA, Wild CT, Cunningham KA, et al. Targeting the 5-HT2C receptor in biological context and the current state of 5-HT2C receptor ligand development. Curr Top Med Chem. 2019;19(16):1381–1398. doi: 10.2174/1568026619666190709101449 PMID: 31288724; PMCID: PMC6761005.
  • Sharma S, Aware KS, Hatware K, et al. Chemistry, analysis, pharmacokinetics and pharmacodynamics aspects of lorcaserin, a selective serotonin 5-HT2C receptor agonist: an update. Mini Rev Med Chem. 2020;20(9):768–778. doi: 10.2174/1389557519666190408154443 PMID: 30961494.
  • Bialer M, Johannessen SI, Koepp MJ, et al. Progress report on new antiepileptic drugs: a summary of the sixteenth eilat conference on new antiepileptic drugs and devices (EILAT XVI): II. Drugs in more advanced clinical development. Epilepsia. 2022 Nov;63(11):2883–2910. doi: 10.1111/epi.17376 Epub 2022 Aug 11. PMID: 35950617.
  • Danks AM, Peters M, Kaye R. LP352, a 5-HT2C superagonist, has broad antiepileptic activity in preclinical seizure models. American epilepsy society. Orlando (FL); [cited 2023 Dec 1–5]. Available from: https://www.longboardpharma.com/wp-content/uploads/2023/12/150204841-01_AES2023_Broad-Precl-Eff_FINAL.pdf
  • Parasrampuria D, Mills I, O‘connell G, et al. A randomized, double-blind, placebo-controlled, multiple ascending dose pharmacokinetics (PK), pharmacodynamics (PD), and Tolerability of LP352 In healthy subjects (P14-8.002). Neurology [Internet]. 2022;98(18_supplement):1771. doi: 10.1212/WNL.98.18_supplement.1771
  • Longboardpharma.com. [cited 2024 Apr 27]. Available from: https://ir.longboardpharma.com/news-releases/news-release-details/longboard-pharmaceuticals-announces-positive-topline-data-phase/
  • Srinivas N, Vossler D, Chan R, et al. A phase 1 study of 5-HT2C superagonist LP352 shows robust brain penetration, a strong correlation between plasma and CSF pharmacokinetics, and QEEG changes reflecting receptor engagement ACCP September 10-12, 2023 – Bellevue, WA.
  • Chan R, Srinivas N, Danks A, et al. LP352 Has Negligible CYP or P-glycoprotein Interaction Potential, Minimizing Therapeutic Complexity in Epilepsy Patients with a High Burden of Polypharmacy [ Abstract]. Americal epilepsy society. abstract number : 3.27. [cited 2023 Apr 12]. Available from: https://aesnet.org/abstractslisting/lp352-has-negligible-cyp-or-p-glycoprotein-interaction-potential-minimizing-therapeutic-complexity-in-epilepsy-patients-with-a-high-burden-of-polypharmacy
  • Longboard Pharmaceuticals (sponsor). Study to investigate LP352 in subjects with developmental and epileptic encephalopathies (PACIFIC) ( ClinicalTrials.gov Identifer: NCT05364021) (last update posted on 2024-01-19.
  • Kaye R, Orevillo C, Dlugos DJ, et al. Efficacy and Safety of Bexicaserin (LP352) in Adolescent and Adult Patients with Developmental and Epileptic Encephalopathies (DEEs): results of the Phase 1b/2a PACIFIC Study. American Academy Of Neurology (AAN); [cited 2024 Apr 3]. Available from: https://www.aan.com//msa/Public/Events/AbstractDetails/57918
  • Longboard Pharmaceuticals (sponsor). Open-label, long-term safety study of LP352 in subjects with developmental and epileptic encephalopathy (ClinicalTrials.Gov Identifer: nCT05626634). 2023 Dec 20.
  • Longboard Pharmaceuticals (sponsor). Intermediate-size expanded access protocol (EAP) for LP352 (ClinicalTrials.Gov identifer: NCT06149663). 2024 Feb 28.
  • Longboardpharma.com. [cited 2024 May 13]. Available from: https://ir.longboardpharma.com/news-releases/news-release-details/longboard-pharmaceuticals-reports-first-quarter-2024-financial
  • Sullivan J, Scheffer IE, Lagae L, et al. Fenfluramine HCl (Fintepla®) provides long-term clinically meaningful reduction in seizure frequency: analysis of an ongoing open- label extension study. Epilepsia. 2020;61(11):2396–2404. doi: 10.1111/epi.16722
  • Higgins GA, Fletcher PJ, Shanahan WR. Lorcaserin: a review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol Ther. 2020;205:107417. doi: 10.1016/j.pharmthera.2019.107417
  • Odi R, Invernizzi RW, Gallily T, et al. Fenfluramine repurposing from weight loss to epilepsy: what we do and do not know. Pharmacol Ther. 2021;226:107866. doi: 10.1016/j.pharmthera.2021.107866
  • Eisai Inc. (sponsor). A multicenter, double-blind, randomized, placebo-controlled, parallel-group study with open-label extension phase of lorcaserin as adjunctive treatment in subjects with Dravet syndrome (ClinicalTrials.Gov Identifier: NCT04572243). 2021 Sep 23.
  • Than M, Kocsis P, Tihanyi K, et al. Concerted action of antiepileptic and antidepressant agents to depress spinal neurotransmission: possible use in the therapy of spasticity and chronic pain. Neurochem Int. 2007;50(4):642–652. doi: 10.1016/j.neuint.2006.12.008
  • Leander JD. Fluoxetine, a selective serotonin-uptake inhibitor, enhances the anticonvulsant effects of phenytoin, carbamazepine, and ameltolide (LY201116). Epilepsia. 1992;33(3):573–576. doi: 10.1111/j.1528-1157.1992.tb01712.x PMID: 1534297.
  • Borowicz KK, Stepień K, Czuczwar SJ. Fluoxetine enhances the anticonvulsant effects of conventional antiepileptic drugs in maximal electroshock seizures in mice. Pharmacol Rep. 2006;58(1):83–90. PMID: 16531634.
  • Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev. 2011;15:269–281. doi: 10.1016/j.smrv.2010.11.003 Epub 2011 Apr 2. PMID: 21459634.
  • Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66:355–474. doi: 10.1016/s0301-0082(02)00009-6 PMID: 12034378.
  • Halford JC, Harrold JA, Lawton CL, et al. Serotonin (5-HT) drugs: effects on appetite expression and use for the treatment of obesity. Curr Drug Targets. 2005;6:201–213. doi: 10.2174/1389450053174550 PMID: 15777190.
  • Mazarati A, Sankar R. Common mechanisms underlying epileptogenesis and the comorbidities of epilepsy. Cold Spring Harb Perspect Med. [2016 Jul 1];6(7):a022798. doi: 10.1101/cshperspect.a022798 PMID: 27371669; PMCID: PMC4930916.
  • Citraro R, Leo A, De Fazio P, et al. Antidepressants but not antipsychotics have antiepileptogenic effects with limited effects on comorbid depressive-like behaviour in the WAG/Rij rat model of absence epilepsy. Br J Pharmacol. 2015 Jun;172(12):3177–3188. doi: 10.1111/bph.13121 Epub 2015 Apr 10. PMID: 25754610; PMCID: PMC4459032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.