Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 47, 2018 - Issue 9
585
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Graphene/carbon black/natural rubber composites prepared by a wet compounding and latex mixing process

, , , &
Pages 398-412 | Received 13 May 2018, Accepted 22 Aug 2018, Published online: 02 Sep 2018

References

  • Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials. Nature. 2006;442:282–286. doi: 10.1038/nature04969
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388. doi: 10.1126/science.1157996
  • Almajid A, Sorochynska L, Friedrich K, et al. Effects of graphene and CNT on mechanical, thermal, electrical and corrosion properties of vinylester based nanocomposites. Plast Rubber Compos. 2015;44(2):50–62. doi: 10.1179/1743289814Y.0000000117
  • Zhan Y, Meng Y, Li Y. Electric heating behavior of flexible graphene/natural rubber conductor with self-healing conductive network. Mater Lett. 2017;192:115–118. doi: 10.1016/j.matlet.2016.12.045
  • Tadakaluru S, Kumpika T, Kantarak E, et al. Highly stretchable and sensitive strain sensors using nano-graphene coated natural rubber. Plast Rubber Compos. 2017;46(7):301–305. doi: 10.1080/14658011.2017.1336345
  • Gheller Jr. J, Ribeiro de Barros Í, Maldaner Jacobi M. Aspects of producing hydrogenated nitrile butadiene rubber (HNBR) nanocomposites by melt compounding processing. Plast Rubber Compos. 2017;46(2):60–68. doi: 10.1080/14658011.2016.1271095
  • Mruk R, Lechtenboehmer A, Unseld K, et al. Preparation of rubber reinforced with at least one of graphene and carbon nanotubes with specialized coupling agent and tire with component. United States patent US 9,090,75. 2015 Jul 28.
  • Yang Z, Liu J, Liao R, et al. Rational design of covalent interfaces for graphene/elastomer nanocomposites. Compos Sci Technol. 2016;132:68–75. doi: 10.1016/j.compscitech.2016.06.015
  • Hernández M, del Mar Bernal M, Verdejo R, et al. Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol. 2012;73:40–46. doi: 10.1016/j.compscitech.2012.08.012
  • Zhang H, Wang C, Zhang Y. Preparation and properties of styrene-butadiene rubber nanocomposites blended with carbon black-graphene hybrid filler. J Appl Polym Sci. 2015;132(3):41309.
  • Wang C, Liu Z, Wang S, et al. Preparation and properties of octadecylamine modified graphene oxide/styrene-butadiene rubber composites through an improved melt compounding method. J Appl Polym Sci. 2016;133(4):42907. doi: 10.1002/app.42907
  • Bai X, Wan C, Zhang Y, et al. Reinforcement of hydrogenated carboxylated nitrile–butadiene rubber with exfoliated graphene oxide. Carbon. 2011;49(5):1608–1613. doi: 10.1016/j.carbon.2010.12.043
  • Cai W, Huang Y, Wang D, et al. Piezoresistive behavior of graphene nanoplatelets/carbon black/silicone rubber nanocomposite. J Appl Polym Sci. 2014;131(3):39778. doi: 10.1002/app.39778
  • Wu S, Zhang L, Weng P, et al. Correlating synergistic reinforcement with chain motion in elastomer/nanocarbon hybrids composites. Soft Matter. 2016;12(33):6893–6901. doi: 10.1039/C6SM01116K
  • Zirnstein B, Tabaka W, Frasca D, et al. Graphene/hydrogenated acrylonitrile-butadiene rubber nanocomposites: dispersion, curing, mechanical reinforcement, multifunctional filler. Polym Test. 2018;66:268–279. doi: 10.1016/j.polymertesting.2018.01.035
  • Zhan Y, Wu J, Xia H, et al. Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng. 2011;296(7):590–602. doi: 10.1002/mame.201000358
  • Potts JR, Shankar O, Du L, et al. Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules. 2012;45(15):6045–6055. doi: 10.1021/ma300706k
  • Tang Z, Wu X, Guo B, et al. Preparation of butadiene–styrene–vinyl pyridine rubber–graphene oxide hybrids through co-coagulation process and in situ interface tailoring. J Mater Chem. 2012;22(15):7492–7501. doi: 10.1039/c2jm00084a
  • Potts JR, Shankar O, Murali S, et al. Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Compos Sci Technol. 2013;74:166–172. doi: 10.1016/j.compscitech.2012.11.008
  • Wu J, Xing W, Huang G, et al. Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer (Guildf). 2013;54(13):3314–3323. doi: 10.1016/j.polymer.2013.04.044
  • Schopp S, Thomann R, Ratzsch K-F, et al. Functionalized graphene and carbon materials as components of styrene-butadiene rubber nanocomposites prepared by aqueous dispersion blending. Macromol Mater Eng. 2014;299(3):319–329. doi: 10.1002/mame.201300127
  • Tian M, Zhang J, Zhang L, et al. Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold. J Colloid Interface Sci. 2014;430:249–256. doi: 10.1016/j.jcis.2014.05.034
  • Tang Z, Zhang L, Feng W, et al. Rational design of graphene surface chemistry for high-performance rubber/graphene composites. Macromolecules. 2014;47(24):8663–8673. doi: 10.1021/ma502201e
  • She X, He C, Peng Z, et al. Molecular-level dispersion of graphene into epoxidized natural rubber: morphology, interfacial interaction and mechanical reinforcement. Polymer (Guildf). 2014;55(26):6803–6810. doi: 10.1016/j.polymer.2014.10.054
  • Guo Q, Luo Y, Liu J, et al. A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J Mater Chem C. 2018;6(8):2139–2147. doi: 10.1039/C7TC05758J
  • Dong B, Zhang L, Wu Y. Influences of different dimensional carbon-based nanofillers on fracture and fatigue resistance of natural rubber composites. Polym Test. 2017;63(Suppl C):281–288. doi: 10.1016/j.polymertesting.2017.08.035
  • Yang G, Liao Z, Yang Z, et al. Effects of substitution for carbon black with graphene oxide or graphene on the morphology and performance of natural rubber/carbon black composites. J Appl Polym Sci. 2015;132(15):41832.
  • Song SH, Kim JM, Park KH, et al. High performance graphene embedded rubber composites. RSC Adv. 2015;5(99):81707–81712. doi: 10.1039/C5RA16446J
  • Liu H, Han J, Xie L, et al. Ammonium persulfate modified carbon black and its reinforcement in natural rubber latex by latex compounding technique. Polym Mater Sci Eng. 2012;28(10):129–132.
  • Pojanavaraphan T, Magaraphan R. Prevulcanized natural rubber latex/clay aerogel nanocomposites. Eur Polym J. 2008;44(7):1968–1977. doi: 10.1016/j.eurpolymj.2008.04.039
  • Stephen R, Jose S, Joseph K, et al. Thermal stability and ageing properties of sulphur and gamma radiation vulcanized natural rubber (NR) and carboxylated styrene butadiene rubber (XSBR) latices and their blends. Polym Degrad Stab. 2006;91(8):1717–1725. doi: 10.1016/j.polymdegradstab.2005.12.001
  • Lorenz O, Parks C. The crosslinking efficiency of some vulcanizing agents in natural rubber. J Polym Sci A Polym Chem. 1961;50(154):299–312.
  • Ismail H, Nasaruddin M, Ishiaku U. White rice husk ash filled natural rubber compounds: the effect of multifunctional additive and silane coupling agents. Polym Test. 1999;18(4):287–298. doi: 10.1016/S0142-9418(98)00030-0
  • Leblanc J, Hardy P. Evolution of bound rubber during the storage of uncured compounds. Kautschuk und Gummi. Kunststoffe. 1991;44(12):1119–1124.
  • Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc. 2008;130(18):5856–5857. doi: 10.1021/ja800745y
  • Stankovich S, Dikin DA, Piner RD, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–1565. doi: 10.1016/j.carbon.2007.02.034
  • Tang M, Xing W, Wu J, et al. Graphene as a prominent antioxidant for diolefin elastomers. J Mater Chem A. 2015;3(11):5942–5948. doi: 10.1039/C4TA06991A
  • Bai Y, Cai H, Qiu X, et al. Effects of graphene reduction degree on thermal oxidative stability of reduced graphene oxide/silicone rubber nanocomposites. High Perform Polym. 2015;27(8):997–1006. doi: 10.1177/0954008315604205
  • Lin Y, Chen Y, Zeng Z, et al. Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites. Compos A Appl Sci Manuf. 2015;70:35–44. doi: 10.1016/j.compositesa.2014.12.008
  • Kang H, Tang Y, Yao L, et al. Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing. Compos B Eng. 2017;112(Suppl C):1–7. doi: 10.1016/j.compositesb.2016.12.035
  • Valentini L, Bittolo Bon S, Lopez-Manchado MA, et al. Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Compos Sci Technol. 2016;128:123–130. doi: 10.1016/j.compscitech.2016.03.024
  • Guth E. Theory of filler reinforcement. J Appl Phys. 1945;16(1):20–25. doi: 10.1063/1.1707495
  • Dewey JM. Theory of filler reìnforcement. Rubber Chem Technol. 1945;18(3):605–606. doi: 10.5254/1.3546755
  • Nie Y, Huang G, Qu L, et al. New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer (Guildf). 2011;52(14):3234–3242. doi: 10.1016/j.polymer.2011.05.004
  • López-Manchado M, Valentín J, Carretero J, et al. Rubber network in elastomer nanocomposites. Eur Polym J. 2007;43(10):4143–4150. doi: 10.1016/j.eurpolymj.2007.07.023
  • Fu D, Zhan Y, Yan N, et al. A comparative investigation on strain induced crystallization for graphene and carbon nanotubes filled natural rubber composites. Express Polym Lett. 2015;9(7):597–607. doi: 10.3144/expresspolymlett.2015.56
  • Li F, Yan N, Zhan Y, et al. Probing the reinforcing mechanism of graphene and graphene oxide in natural rubber. J Appl Polym Sci. 2013;129(4):2342–2351. doi: 10.1002/app.38958
  • Heinrich G, Vilgis TA. Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks. Macromolecules. 1993;26(5):1109–1119. doi: 10.1021/ma00057a035
  • Funt J. Dynamic testing and reinforcement of rubber. Rubber Chem Technol. 1988;61(5):842–865. doi: 10.5254/1.3536222
  • Heinrich G, Klüppel M. Recent advances in the theory of filler networking in elastomers Filled elastomers drug delivery systems. Berlin, Heidelberg: Springer; 2002. p. 1–44.
  • Heinrich G, Klüppel M, Vilgis TA. Reinforcement of elastomers. Curr Opin Solid State Mater Sci. 2002;6(3):195–203. doi: 10.1016/S1359-0286(02)00030-X
  • Klüppel M, Schramm J. A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol Theory Simul. 2000;9(9):742–754. doi: 10.1002/1521-3919(20001201)9:9<742::AID-MATS742>3.0.CO;2-4
  • Kraus G. Reinforcement of elastomers by carbon black Fortschritte der Hochpolymeren-Forschung. Berlin, Heidelberg: Springer; 1971. p. 155–237.
  • Donnet J, Vidal A. Carbon black: surface properties and interactions with elastomers Pharmacy/thermomechanics/elastomers/telechelics. Berlin, Heidelberg: Springer; 1986. p. 103–127.
  • Medalia AI. Morphology of aggregates: VI. Effective volume of aggregates of carbon black from electron microscopy; application to vehicle absorption and to die swell of filled rubber. J Colloid Interface Sci. 1970;32(1):115–131. doi: 10.1016/0021-9797(70)90108-6
  • Janzen J. Extinction of light by highly nonspherical strongly absorbing colloidal particles: spectrophotometric determination of volume distributions for carbon blacks. Appl Opt. 1980;19(17):2977–2985. doi: 10.1364/AO.19.002977
  • Flory PJ. Effects of molecular structure on physical properties of butyl rubber. Ind Eng Chem. 1946;38(4):417–436. doi: 10.1021/ie50436a023
  • Ozbas B, Toki S, Hsiao BS, et al. Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber. J Polym Sci B Polym Phys. 2012;50(10):718–723. doi: 10.1002/polb.23060
  • Wang MC, Guth E. Statistical theory of networks of non-Gaussian flexible chains. J Chem Phys. 1952;20(7):1144–1157. doi: 10.1063/1.1700682
  • Klüppel M, Heinrich G. Network structure and mechanical properties of sulfur-cured rubbers. Macromolecules. 1994;27(13):3596–3603. doi: 10.1021/ma00091a022
  • Klüppel M. Finite chain extensibility and topological constraints in swollen networks. Macromolecules. 1994;27(24):7179–7184. doi: 10.1021/ma00102a028
  • Aharoni SM. Correlations between chain parameters and the plateau modulus of polymers. Macromolecules. 1986;19(2):426–434. doi: 10.1021/ma00156a033
  • Fetters L, Lohse D, Richter D, et al. Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules. 1994;27(17):4639–4647. doi: 10.1021/ma00095a001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.