Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 48, 2019 - Issue 7
132
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Safe design fatigue life of CNT loaded woven GFRP laminates under fully reversible axial fatigue: application of two-parameters Weibull distribution

&
Pages 293-306 | Received 19 Nov 2018, Accepted 25 Apr 2019, Published online: 07 May 2019

References

  • Gaurav A, Singh KK. Fatigue behavior of FRP composites and CNT-embedded FRP composites: a review. Polym Compos. 2018;39(6):1785–1808. doi: 10.1002/pc.24177
  • Md. Ansari TA, Singh KK, Azam MS. Fatigue damage analysis of fiber-reinforced polymer composites – a review. J Reinf Plast Compos. 2018;37(9):636–654. doi: 10.1177/0731684418754713
  • Zhang H, Tang LC, Zhang Z, et al. Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures. Polymer. 2008;49(17):3816–3825. doi: 10.1016/j.polymer.2008.06.040
  • Bortz DR, Heras EG, Martin-gullon I. Impressive fatigue life and fracture toughness. Macromolecules. 2012;45:238–245. doi: 10.1021/ma201563k
  • Tang L-C, Wan Y-J, Peng K, et al. Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles. Compos Part A Appl Sci Manuf. 2013;45:95–101. doi: 10.1016/j.compositesa.2012.09.012
  • Bai JB, Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos Part A Appl Sci Manuf. 2003;34:689–694. doi: 10.1016/S1359-835X(03)00140-4
  • Singh KK, Gaurav A. Effectiveness of short and straight carbon nanotubes on dispersion state and static/dynamic mechanical properties of woven glass fibre-reinforced polymer laminates. Proc Inst Mech Eng Part L: J Mater Des Appl. 2018. doi:10.1177/1464420718780890.
  • Yu N, Zhang ZH, He SY. Fracture toughness and fatigue life of MWCNT/epoxy composites. Mater Sci Eng A. 2008;494(1–2):380–384. doi: 10.1016/j.msea.2008.04.051
  • Ogasawara T, Ishida Y, Kasai T. Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. Compos Sci Technol. 2009;69(11–12):2002–2007. doi: 10.1016/j.compscitech.2009.05.003
  • Böger L, Sumfleth J, Hedemann H, et al. Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy. Compos Part A Appl Sci Manuf. 2010;41(10):1419–1424. doi: 10.1016/j.compositesa.2010.06.002
  • Alafogianni P, Dassios K, Farmaki S, et al. On the efficiency of UV-vis spectroscopy in assessing the dispersion quality in sonicated aqueous suspensions of carbon nanotubes. Colloids Surf A. 2016;495:118–124. doi: 10.1016/j.colsurfa.2016.01.053
  • Loos MR, Yang J FEKEDL, Manas-Zloczower I. Enhanced fatigue life of carbon nanotube-reinforced epoxy composites. Polym Engg Sci. 2012;52(9):1882–1887. doi: 10.1002/pen.23145
  • Garg M, Sharma S, Mehta R. Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites. Compos Part A Appl Sci Manuf. 2015;76:92–101. doi: 10.1016/j.compositesa.2015.05.012
  • Yu J, Grossiord N, Koning CE, et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon. 2007;45(3):618–623. doi: 10.1016/j.carbon.2006.10.010
  • Gojny FH, Wichmann MHG, Fiedler B, et al. Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos Part A Appl Sci Manuf. 2005;36(11):1525–1535. doi: 10.1016/j.compositesa.2005.02.007
  • Song YS. Multiscale fiber-reinforced composites prepared by vacuum-assisted resin transfer molding. Polym Compos. 2007;28(4):458–461. doi: 10.1002/pc.20301
  • Almajid A, Sorochynska L, Fredrich K, et al. Effects of graphene and CNT on mechanical, thermal, electrical, and corrosion properties of vinyl ester based nanocomposites. Plast Rubber Compos. 2015;44(2):50–62. doi: 10.1179/1743289814Y.0000000117
  • Wang B, Liu Y, Gao Y. Comparison of two different carbon nanotubes based hybrid multiscale composites with respect to mechanical and electrical properties. Plast Rubber Compos. 2017;46(5):231–237. doi: 10.1080/14658011.2017.1317473
  • Grimmer CS, Dharan CKH. High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites. J Mater Sci. 2008;43(13):4487–4492. doi: 10.1007/s10853-008-2651-9
  • Gaurav A, Singh KK. Fatigue life enhancement of quasi-isotropic symmetric GFRP laminate by doping MWCNTs. Mat Today Proc. 2017;4:7240–7245. doi: 10.1016/j.matpr.2017.07.052
  • Borrego LP, Costa JDM, Ferreira JAM, et al. Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles. Compos Part B Eng. 2014;62:65–72. doi: 10.1016/j.compositesb.2014.02.016
  • Knoll JB, Riecken BT, Kosmann N, et al. The effect of carbon nanoparticles on the fatigue performance of carbon fibre reinforced epoxy. Compos Part A Appl Sci Manuf. 2014;67:233–240. doi: 10.1016/j.compositesa.2014.08.022
  • Vavouliotis A, Karapappas P, Loutas T, et al. Multistage fatigue life monitoring on carbon fiber reinforced polymers enhanced with multiwalled carbon nanotubes. Plast Rubber Compos. 2009;38(2–4):124–130. doi: 10.1179/174328909X387928
  • Davis DC, Wilkerson JW, Zhu J, et al. Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology. Compos Struct. 2010;92(11):2653–2662. doi: 10.1016/j.compstruct.2010.03.019
  • Madhukar MS, Drazl LT. Fiber-matrix adhesion and its effect on composite mechanical properties III. Longitudinal (0°) compressive properties of graphite/epoxy composites. J Compos Mater. 1992;26(3):310–333. doi: 10.1177/002199839202600301
  • Zhang G, Latour RA. FRP Composite compressive strength and its dependence upon interfacial bond strength, fiber misalignment, and matrix nonlinearity. J Thermoplast Compos Mater. 1993;6(4):298–311. doi: 10.1177/089270579300600403
  • Shuart MJ. Failure of compression-loaded multidirectional composite laminates. AIAA J. 1989;27(9):1274–1279. doi: 10.2514/3.10255
  • Berbinau P, Soutis C, Goutas P, et al. Effect of off-axis ply orientation on 0°-fibre microbuckling. Compos Part A Appl Sci Manuf. 1999;30(10):1197–1207. doi: 10.1016/S1359-835X(99)00026-3
  • Zhou G, Davies GAO. Characterization of thick glass woven roving/polyester laminates: 1. Tension, compression and shear. Composites. 1995;26(8):579–586. doi: 10.1016/0010-4361(95)92622-J
  • Adams DOH, Bell SJ. Compression strength reductions in composite laminates due to multiple-layer waviness. Compos Sci Technol. 1995;53(2):207–212. doi: 10.1016/0266-3538(95)00020-8
  • Akil Ö, Yildirim U, Güden M, et al. Effect of strain rate on the compression behaviour of a woven fabric S2-glass fiber reinforced vinyl ester composite. Polym Test. 2003;22(8):883–887. doi: 10.1016/S0142-9418(03)00026-6
  • Adams DO, Hyer MW. Effects of layer waviness on the compression fatigue performance of thermoplastic composite laminates. Int. J. Fatigue. 1994;16(6):385–391. https://doi.org/10.1016/0142-1123 doi: 10.1016/0142-1123(94)90450-2
  • Rosenfeld MS, Huang SL. Fatigue characteristics of graphite-epoxy laminates under compression loading. J Aircr. 1978;15(5):264–268. doi: 10.2514/3.58353
  • Curtis PT, Moore BB. A comparison of the fatigue performance of woven and non-woven CFRP laminates in reversed axial loading. Int J Fatigue. 1987;9(2):67–78. doi: 10.1016/0142-1123(87)90047-8
  • Kawai M, Koizumi M. Nonlinear constant fatigue life diagrams for carbon/epoxy laminates at room temperature. Compos Part A Appl Sci Manuf. 2007;38(11):2342–2353. doi: 10.1016/j.compositesa.2007.01.016
  • Mall S, Katwyk DW, Bolick RL, et al. Tension-compression fatigue behavior of a H-VARTM manufactured unnotched and notched carbon/epoxy composite. Compos Struct. 2009;90(2):201–207. doi: 10.1016/j.compstruct.2009.03.015
  • Gamstedt EK, Sjogren BA. Micromechanisms in tension-compression fatigue of composite micromechanisms in tension-compression fatigue of composite. Compos Sci Technol. 1999;59:167–178. doi: 10.1016/S0266-3538(98)00061-X
  • Gathercole N, Reiter H, Adam T, et al. Life prediction for fatigue of T800/5245 carbon-fibre composites: I. Constant-amplitude loading. Int J Fatigue. 1994;16(8):523–532. doi: 10.1016/0142-1123(94)90478-2
  • Sakin R, Ay I. Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites. Mater Des. 2008;29(6):1170–1181. doi: 10.1016/j.matdes.2007.05.005
  • Yang H-S, Qiao P, Wolcott MP. Fatigue characterization and reliability analysis of wood flour filled polypropylene composites. Polym Compos. 2010;33(4):553–560.
  • Bedi R, Chandra R. Fatigue-life distributions and failure probability for glass-fiber reinforced polymeric composites. Compos Sci Technol. 2008;69:1381–1387. doi: 10.1016/j.compscitech.2008.09.016
  • El-baky MAA, Attia MA, Kamel M. Flexural fatigue and failure probability analysis of polypropylene-glass hybrid fibres reinforced epoxy composite laminates. Plast Rubber Compos. 2018;47(2):47–64. doi: 10.1080/14658011.2017.1397252
  • Khashaba UA. Fatigue and reliability analysis of Unidirectional GFRP composites under rotating bending loads. J Compos Mater. 2003;37(4):317–331. doi: 10.1177/0021998303037004680
  • Khashaba UA, Aljinaidi AA, Hamed MA. Fatigue and reliability analysis of nano-modified scarf adhesive joints in carbon fiber composites. Compos Part B. 2017;120:103–117. doi: 10.1016/j.compositesb.2017.04.001
  • Kleinschmidt AC, Almeida JHS Jr, Donato RK, et al. Functionalized-carbon nanotubes with physisorbed ionic liquid as filler for epoxy nanocomposites. J Nanosci Nanotechnol. 2016;16:9132–9140. doi: 10.1166/jnn.2016.12906
  • Gojny F, Wichmann M, Fiedler B, et al. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study. Compos Sci Technol. 2005;65(15–16):2300–2313. doi: 10.1016/j.compscitech.2005.04.021
  • ASTM D2584-11. Standard test method for ignition loss of glass strands and fabrics 1. Annu B ASTM Stand. 2011;8(1):1–3. 10.1520/D2584-18
  • ASTM D3039/D3039M-14. Standard test method for tensile properties of polymer matrix Composite materials. Annu B ASTM Stand. 2014;15.03:1–13.
  • ASTM D3410/D3410M-16. Standard test method for compressive properties of polymer matrix Composite materials with Unsupported Gage Section by shear loading. Annu B ASTM Stand. 2016;15(3):1–16.
  • ASTM D3479/3479M-12. Standard test method for tension-tension fatigue of polymer matrix Composite materials. Annu B ASTM Stand. 2012;15.03:1–6. 10.1520/D3479_D3479M-12
  • Franchini E, Galy J, Gérard JF. Sepiolite-based epoxy nanocomposites: relation between processing, rheology, and morphology. J Colloid Interface Sci. 2009;329(1):38–47. doi: 10.1016/j.jcis.2008.09.020
  • Pötschke P, Fornes TD, Paul DR. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer. 2002;43(11):3247–3255. doi: 10.1016/S0032-3861(02)00151-9
  • Brunbauer J, Pinter G. Effects of mean stress and fibre volume content on the fatigue-induced damage mechanisms in CFRP. Int J Fatigue. 2015;75:28–38. doi: 10.1016/j.ijfatigue.2015.01.014
  • Almeida JHS Jr, Souza SDB, Botelho EC, et al. Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning. J Mater Sci. 2016;51:4697–4708. doi: 10.1007/s10853-016-9787-9
  • Zhang J, Chaisombat K, He S, et al. Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mat Des. 2012;36:75–80. doi: 10.1016/j.matdes.2011.11.006
  • Yang B, Kozey V, Adanur S, et al. Bending, compression, and shear behavior of woven glass fiber–epoxy composites. Compos Part B. 2000;31:715–721. doi: 10.1016/S1359-8368(99)00052-9
  • Godara A, Gorbatikh L, Kalinka G, et al. Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos Sci Technol. 2010;70:1346–1352. doi: 10.1016/j.compscitech.2010.04.010
  • Wang ASD. A non-linear microbuckling model predicting the compressive strength of unidirectional composites ASME Meeting, San Francisco, CA, USA (December 1978).
  • Crannage MA. The flexural strength of unidirectional composite materials – an analytical investigation. Final Report under MOD Contract A91a, 1278 (November 1984).
  • Quaresimin M, Ricotta M. Damage evolution in woven composite laminates under fatigue loading. In: International conference on “Fatigue Crack Paths” 2003, Parma, Italy, 18–20 September 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.