Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 51, 2022 - Issue 4
335
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Nanocomposite of p-type conductive polymer/iron (III) trimesic (Fe-BTC) metal–organic frameworks: synthesis, characterisation and pseudocapacitance performance

, , ORCID Icon, &

References

  • Kumar R, Singh M, Soam A. Study on electrochemical properties of silicon micro particles as electrode for supercapacitor application. Surf Interfaces. 2020;19:100524.
  • Xu J, Wu L, Liu Y, et al. NiO–rGO composite for supercapacitor electrode. Surf Interfaces. 2020;18:100420.
  • Liu Y, Cao X, Jiang D, et al. Hierarchical CuO nanorod arrays in situ generated on three-dimensional copper foam via cyclic voltammetry oxidation for high-performance supercapacitors. J Mater Chem A. 2018;6:10474–10483.
  • Yu Y, Gao W, Shen Z, et al. A novel Ni3N/graphene nanocomposite as supercapacitor electrode material with high capacitance and energy density. J Mater Chem A. 2015;3:16633–16641.
  • Liu L, Niu Z, Chen J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem Soc Rev. 2016;45:4340–4363.
  • Wang Y, Xia Y. Recent progress in supercapacitors: from materials design to system construction. Adv Mater. 2013;25:5336–5342.
  • Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources. 2011;196:1–12.
  • Shakir I, Almutairi Z, Shar SS, et al. Synthesis of Co(OH)2/CNTs nanocomposite with superior rate capability and cyclic stability for energy storage applications. Mater Res Express. 2020;7:125501.
  • Mohilner DM, Adams RN, Argersinger WJ. Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode. J Am Chem Soc. 1962;84:3618–3622.
  • Moussa M, El-Kady MF, Zhao Z, et al. Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. Nanotechnology. 2016;27:442001.
  • Meng Y, Wang K, Zhang Y, et al. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater. 2013;25:6985–6990.
  • Ehsani A, Parsimehr H, Nourmohammadi H, et al. Environment-friendly electrodes using biopolymer chitosan/poly ortho aminophenol with enhanced electrochemical behavior for use in energy storage devices. Polym Compos. 2019;40(12):4629–4637.
  • Shiri H, Ehsani A, Behjatmanesh-Ardakani R, et al. Electrosynthesis of Y2O3 nanoparticles and its nanocomposite with POAP as high efficient electrode materials in energy storage device: surface, density of state and electrochemical investigation. Solid State Ion. 2019;338:87–95.
  • Naseri M, Fotouhi L, Ehsani A, et al. Novel electroactive nanocomposite of POAP for highly efficient energy storage and electrocatalyst: Electrosynthesis and electrochemical performance. J Colloid Interface Sci. 2016;484:308–313.
  • Ke F-S, Wu Y-S, Deng H. Metal-organic frameworks for lithium ion batteries and supercapacitors. J Solid State Chem. 2015;223:109–121.
  • Deep A, Bhardwaj SK, Paul AK, et al. Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosens Bioelectron. 2015;65:226–231.
  • Sundriyal S, Kaur H, Bhardwaj SK, et al. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coord Chem Rev. 2018;369:15–38.
  • Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc. 2008;130:5390–5391.
  • Li Y, Xu Y, Yang W, et al. MOF-derived metal oxide composites for advanced electrochemical energy storage. Small. 2018;14:1704435.
  • Lee D-H, Han J-H, Kim M-K, et al. A case of polyarteritis nodosa manifesting as a neuropathy following influenza infection. J Rheum Dis. 2012;19:163–167.
  • Tan Y, Zhang W, Gao Y, et al. Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Adv. 2015;5:17601–17605.
  • Nicolò C, Ricardo RV, Willem D, et al. A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe). ChemElectroChem. 2014;1:1182–1188.
  • Srimuk P, Luanwuthi S, Krittayavathananon A, et al. Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper. Electrochim Acta. 2015;157:69–77.
  • Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc. 2015;137:4920–4923.
  • Yi-Zhou Z, Tao C, Yang W, et al. A simple approach to boost capacitance: Flexible supercapacitors based on manganese oxides@MOFs via chemically induced In situ self-transformation. Adv Mater. 2016;28:5242–5248.
  • Salunkhe RR, Kamachi Y, Torad NL, et al. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J Mater Chem A. 2014;2:19848–19854.
  • Meng F, Fang Z, Li Z, et al. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. J Mater Chem A. 2013;1:7235.
  • Zhang Y-Z, Wang Y, Xie Y-L, et al. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale. 2014;6:14354–14359.
  • Ullah S, Khan IA, Choucair M, et al. A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material. Electrochim Acta. 2015;171:142–149.
  • Sanchez-Sanchez M, de Asua I, Ruano D, et al. Direct synthesis, structural features, and enhanced catalytic activity of the basolite F300-like semiamorphous Fe-BTC framework. Cryst Growth Des. 2015;15:4498–4506.
  • Majano G, Ingold O, Yulikov M, et al. Room-temperature synthesis of Fe–BTC from layered iron hydroxides: The influence of precursor organisation. CrystEngComm. 2013. http://xlink.rsc.org/?DOI=c3ce41366g.
  • Ehsani A, Bigdeloo M, Assefi F, et al. Ternary nanocomposite of conductive polymer/chitosan biopolymer/metal organic framework: synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors. Inorg Chem Commun. 2020;115:107885.
  • Shiri H, Ehsani A, Khales M. Electrochemical synthesis of Sm2O3 nanoparticles: application in conductive polymer composite films for supercapacitors. J Colloid Interface Sci. 2017;505:940–946.
  • Sadeghi S, Mohammad Shiri H, Ehsani A, et al. Electrosynthesis of high-purity TbMn2O5 nanoparticles and its nanocomposite with conjugated polymer: surface, density of state and electrochemical investigation. Solid State Sci. 2020;105:106227.
  • Shiri HM, Ehsani A, Behjatmanesh-Ardakani R. Electrochemical deposition and plane-wave periodic DFT study on Dy2O3 nanoparticles and pseudocapacitance performance of Dy2O3 /conductive polymer nanocomposite film. J Taiwan Inst Chem Eng. 2018;93:632–643.
  • Ehsani A, Safari R, Yazdanpanah H, et al. Electroactive conjugated polymer / magnetic functional reduced graphene oxide for highly capacitive pseudocapacitors: electrosynthesis, physioelectrochemical and DFT investigation. Electrochem Sci Technol. 2018;4:301–307.
  • Kahriz P, Mahdavi H, Ehsani A, et al. Influence of synthesized functionalized reduced graphene oxide aerogel with 4,4′-methylenedianiline as reducing agent on electrochemical and pseudocapacitance performance of poly orthoaminophenol electroactive film. Electrochim Acta. 2020;354:136736.
  • Bisquert J, Belmonte G, Santiago F, et al. Application of a distributed impedance model in the analysis of conducting polymer films. Electrochem Commun. 2000;2(8):601–605.
  • Shayeh J, Sadeghinia M, Siadat S, et al. A novel route for electrosynthesis of CuCr2O4 nanocomposite with p-type conductive polymer as a high performance material for electrochemical supercapacitors. J Colloid Interface Sci. 2017;496:401–406.
  • Ehsani A, Mahjani M, Jafarian M. Electrochemical impedance spectroscopy study on intercalation and anomalous diffusion of AlCl-4 ions into graphite in basic molten salt. Turkish J Chem. 2011;35(5):735–743.
  • Mahjani MG, Ehsani A, Jafarian M. Synth Met. 2010;160:1252–1258.
  • Ehsani A, Bigdeloo M, Lorparizangene A, et al. J Chin Chem Soc. 2019;66:396–401.
  • Ehsani A, Mirtamizdoust B, Yousefi M, et al. Bull Chem Soc Jpn. 2018;91:617–622.
  • Shabani-Shayeh J, Ehsani A, Nikkar A, et al. New J Chem. 2015;39:9454.
  • Ehsani A, Rezaei Z, Agah A, et al. Electrochemical and theoretical investigation of functionalized reduced graphene aerogel modified electrode for lead ions sensing. Microchem J. 2021;165:106074.
  • Ehsani A, Esfahaniha M, Khodaei kahriz P, et al. Functionalized graphene oxide aerogel as a high efficient material for electrochemical sensing of organic pollutant. Surf Interfaces. 2021;22:100817.
  • Ehsani A, Moftakhar M, karimi F. Lignin-derived carbon as a high efficient active material for enhancing pseudocapacitance performance of p-type conductive polymer. J Energy Storage. 2021;35:102291.
  • Ehsani A, Mirtamizdoust B, karimi F, et al. Influence of nanostructured VO-acetylacetonate coordination system with 2-(pyridin-4-ylmethylene) hydrazine-1-carbothioamide in pseudocapacitance performance of p-type conductive polymer composite film. Plast Rubber Compos. 2021;50(4):172–179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.