Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 52, 2023 - Issue 7
164
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Taguchi-grey relational analysis in parameter optimisation of green biopolymer composites

, , ORCID Icon, , , & show all
Pages 375-386 | Received 04 Mar 2022, Accepted 10 Apr 2023, Published online: 19 Apr 2023

References

  • Kaplan DL. Biopolymers from renewable resources. Berlin: Springer; 1998. p. 1–29; doi:10.1007/978-3-662-03680-8.
  • Mohanty AK, Misra M, Drzal LT. Natural fibers, biopolymers, and biocomposites. Boca Raton: CRC Press; 2005. p. 2–31.
  • Hassan MES, Bai J, Dou DQ. Biopolymers; definition, classification and applications. Egypt J Chem. 2019;62(9):1725–1737. doi:10.21608/ejchem.2019.6967.1580.
  • Gunning MA, Geever LM, Killion JA, et al. The effect of the mixing routes of biodegradable polylactic acid and polyhydroxybutyrate nanocomposites and compatibilised nanocomposites. J Thermoplast Compos. 2016;29(4):538–557. doi:10.1177/0892705714526912.
  • Lopera-Valle A, Caputo JV, Leão R, et al. Influence of epoxidized canola Oil (eCO) and cellulose nanocrystals (CNCs) on the mechanical and thermal properties of polyhydroxybutyrate (PHB)—poly (lactic acid)(PLA) blends. Polymers (Basel). 2019;11(6):933. doi:10.3390/polym11060933.
  • Erceg M, Kovacic T, Klaric I. Thermal degradation of poly (3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polym Degrad Stab. 2005;90:313–318. doi:10.1016/j.polymdegradstab.2005.04.048.
  • Seoane IT, Manfredi LB, Cyras VP. Properties and processing relationship of polyhydroxybutyrate and cellulose biocomposites. Proc Mater Sci. 2015;8:807–813. doi:10.1016/j.mspro.2015.04.139.
  • Arrieta MP, Fortunati E, Dominici F, et al. Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohyd Polym. 2015;121:265–275. doi:10.1016/j.carbpol.2014.12.056.
  • Fortunati E, Peltzer M, Armentano I, et al. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohyd Polym. 2012;90(2):948–956. doi:10.1016/j.carbpol.2012.06.025.
  • Arrieta MP, Fortunati E, Dominici F, et al. Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohyd Polym. 2014;107:16–24. doi:10.1016/j.carbpol.2014.02.044.
  • Bartczak Z, Galeski A, Kowalczuk M, et al. Tough blends of poly (lactide) and amorphous poly ([R, S]-3-hydroxy butyrate)–morphology and properties. Eur Polym J. 2013;49(11):3630–3641. doi:10.1016/j.eurpolymj.2013.07.033.
  • Othman SH. Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric and Agric Sci Proc. 2014;2:296–303. doi:10.1016/j.aaspro.2014.11.042.
  • Bracone M, Merino D, Gonzalez JS, et al. Natural polymers derivatives, blends and composites. New Delhi: Nova Publisher; 2016. p. 171–194.
  • Uzun G, Aydemir D. Biocomposites from polyhydroxybutyrate and bio-fillers by solvent casting method. B Mater Sci. 2017;40:383–393. doi:10.1007/s12034-017-1371-7.
  • Resano-Goizueta I, Ashokan BK, Trezza TA, et al. Effect of nano-fillers on tensile properties of biopolymer films. J Polym Environ. 2018;26(9):3817–3823. doi:10.1007/s10924-018-1260-1.
  • Díez-Pascual AM. Synthesis and applications of biopolymer composites. Int J Mol Sci. 2019;20:2321. doi:10.3390/ijms20092321.
  • Frone AN, Batalu D, Chiulan I, et al. Morpho-Structural, thermal and mechanical properties of PLA/PHB/cellulose biodegradable nanocomposites obtained by compression molding, extrusion, and 3D printing. Nanomater. 2020;10(1):51. doi:10.3390/nano10010051.
  • D’Anna A, Arrigo R, Frache A. PLA/PHB blends: biocompatibilizer effects. Polymers. 2019;11(9):1416. doi:10.3390/polym11091416.
  • Yeo JCC, Muiruri JK, Tan BH, et al. Biodegradable PHB-rubber copolymer toughened PLA green composites with ultrahigh extensibility. ACS Sustain Chem Eng. 2018;6(11):15517–15527. doi:10.1021/acssuschemeng.8b03978.
  • Liu AR, Xu BZ, Chen CC, et al. Effects of modified SWCNT on the mechanical and thermal properties of PLA/PHB bio-composites. AIP Adv. 2020;10(7):075122. doi:10.1063/5.0011522.
  • Smith MK, Paleri DM, Abdelwahab M, et al. Sustainable composites from poly (3-hydroxybutyrate)(PHB) bioplastic and agave natural fibre. Green Chem. 2020;22(12):3906–3916. doi:10.1039/D0GC00365D.
  • Aydemir D, Gardner DJ. Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohyd Polym. 2020;250:116867. doi:10.1016/j.carbpol.2020.116867.
  • Toloie-Eshlaghy A, Homayonfar M. MCDM methodologies and applications: a literature review from 1999 to 2009. Res J Int Stud. 2011;21:86–137.
  • Noryani M, Sapuan SM, Mastura MT. Multi-criteria decision-making tools for material selection of natural fibre composites: a review. J Mec Eng Sci. 2018;12(1):3330–3353. doi:10.15282/jmes.12.1.2018.5.0299.
  • Aydemir D, Alsan M, Altuntas E, et al. Mechanical, thermal and morphological properties of heat-treated wood-polypropylene composites and comparison of the composites with PROMETHEE method. Plast, Rubber Compos. 2019;48(9):389–400. doi:10.1080/14658011.2019.1638132.
  • Riera MA, Palma RR. Advances in the domain of environmental biotechnology. Berlin: Springer; 2021. p. 335–356.
  • Milani AS, Eskicioglu C, Robles K, et al. Multiple criteria decision making with life cycle assessment for material selection of composites. Express Polym Lett. 2011;5(12):1062–1074. doi:10.3144/expresspolymlett.2011.104.
  • Babalola MA. A multi-criteria decision analysis of waste treatment options for food and biodegradable waste management in Japan. Environ. 2015;2(4):471–488. doi:10.3390/environments2040471.
  • Al-Oqla FM, Sapuan SM. Materials selection for natural fiber composites. Duxford: Woodhead Publishing; 2017. p. 49–71.
  • Khan ZA, Siddiquee AN, Kamaruddin S. Optimization of in-feed centreless cylindrical grinding process parameters using grey relational analysis. Pertanika J Sei Technol. 2012;20(2):257–268.
  • Pawade RS, Joshi SS. Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis. Int J Adv Manuf Tech. 2011;56(1-4):47–62. doi:10.1007/s00170-011-3183-z.
  • Panda A, Sahoo A, Rout R. Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: a case study. Decision Sci Lett. 2016;5(4):581–592. doi:10.5267/j.dsl.2016.3.001.
  • Taguchi G, Elsayed EA, Hsiang T. Quality engineering in production systems. New York: McGraw-Hill; 1989. p. 5–30.
  • Chang C, Kuo C. Evaluation of surface roughness in laser-assisted machining of aluminium oxide ceramics with Taguchi method. Int J Mac Tools Manuf. 2007;47:141–147. doi:10.1016/j.ijmachtools.2006.02.009.
  • Pınar A, Güllü A. Sayısal Denetimli Hidrolik Pozisyonlama Sisteminin Taguchı Metodu İle Optimizasyonu. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi. 2010;25(1):93–100.
  • Chen YH, Tam SC, Chen WL, et al. Application of the Taguchi method in the optimization of laser micro–engraving of photomasks. Int J Mat Prod Tech. 1996;11(3-4):333–344. doi:10.1504/IJMPT.1996.036336.
  • Köksoy O, Muluk FZ. Solution to the Taguchi's problem with correlated responses. Gazi Univer J Sci. 2004;17(1):59–70.
  • Kıvak T. Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement (Mahwah N J). 2014;50:19–28. doi:10.1016/j.measurement.2013.12.017.
  • Masmiati N, Sarhan AA. Optimizing cutting parameters in inclined end milling for minimum surface residual stress–Taguchi approach. Measurement (Mahwah N J). 2015;60:267–275. doi:10.1016/j.measurement.2014.10.002.
  • Stepanova M, Korzhikova-Vlakh E. Modification of cellulose micro-and nanomaterials to improve properties of aliphatic polyesters/cellulose composites: a review. Polymers (Basel). 2022;14(7):1477. doi:10.3390/polym14071477.
  • dos Santos FA, Iulianelli GC, Tavares MIB. The use of cellulose nanofillers in obtaining polymer nanocomposites: properties, processing, and applications. Mater Sci Appl. 2016;7(05):257–294.
  • Kalia S, Boufi S, Celli A, et al. Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci. 2014;292(1):5–31. doi:10.1007/s00396-013-3112-9.
  • Eichhorn SJ, Etale A, Wang J, et al. Current international research into cellulose as a functional nanomaterial for advanced applications. J Mater Sci. 2022: 1–71. doi:10.1007/s10853-022-06903-8.
  • Mofokeng JP, Luyt AS. Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochim Acta. 2015;613:41–53. doi:10.1016/j.tca.2015.05.019.
  • Gumus H, Aydemir D, Altuntas E, et al. Cellulose nanofibrils and nano-scaled titanium dioxide-reinforced biopolymer nanocomposites: selecting the best nanocomposites with multicriteria decision-making methods. J Compos Mater. 2020;54(7):923–935. doi:10.1177/0021998319870842.
  • Silva FA, Dourado F, Gama M, et al. Nanocellulose bio-based composites for food packaging. Nanomaterials. 2020;10(10):2041. doi:10.3390/nano10102041.
  • Abdelwahab MA, Flynn A, Chiou BS, et al. Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stabil. 2012;97(9):1822–1828. doi:10.1016/j.polymdegradstab.2012.05.036.
  • Armentano I, Fortunati E, Burgos N, et al. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym Lett. 2015;9(7):583–596. doi:10.3144/expresspolymlett.2015.55.
  • Vogel C, Siesler HW. Thermal degradation of poly(ℇ-caprolactone), poly(l-lactic acid) and their blends with poly(3-hydroxy-butyrate) studied by TGA/FT-IR spectroscopy. Macromol Symp. 2008;265(1):183–194. doi:10.1002/masy.200850520.
  • Zhang M, Thomas NL. Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Tech. 2011;30(2):67–79. doi:10.1002/adv.20235.
  • Rhim JW, Park HM, Ha CS. Bio-nanocomposites for food packaging applications. Progress Polym Sci. 2013;38(10–11):1629–1652. doi:10.1016/j.progpolymsci.2013.05.008.
  • Mosnáčková K, Opálková Šišková A, Kleinová A, et al. Properties and degradation of novel fully biodegradable PLA/PHB blends filled with keratin. Int J Molec Sci. 2020;21(24):9678. doi:10.3390/ijms21249678.
  • Olejnik O, Masek A, Zawadziłło J. Processability and mechanical properties of thermoplastic polylactide/polyhydroxybutyrate (PLA/PHB) bioblends. Materials (Basel). 2021;14(4):898. doi:10.3390/ma14040898.
  • Khan SA, Chaabane A, Dweiri FT. Multi-criteria methods and techniques applied to supply chain management. London: Intech; 2018, Chap1; p. 3–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.