Publication Cover
Plastics, Rubber and Composites
Macromolecular Engineering
Volume 52, 2023 - Issue 9-10
118
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Lifetime prediction under dead-load long-term creep test and models analysis of wood-plastic composites for building materials

ORCID Icon, , &
Pages 506-515 | Received 10 Aug 2022, Accepted 17 Jun 2023, Published online: 12 Jul 2023

References

  • Liping L, Guo W, Guo C. Synergistic effect of melamine polyphosphate and aluminum hypophosphite on mechanical properties and flame retardancy of HDPE/wood flour composites. Wood Sci Technol. 2017;51:493–506. doi:10.1007/s00226-016-0877-2
  • Srivabut C, Ratanawilai T, Hiziroglu S. Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber. Constr Build Mater. 2018;162:450–458. doi:10.1016/j.conbuildmat.2017.12.048
  • De Paiva F-F-G, De Maria V-P-K, Torres G-B, et al. Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. J Mater Cycles Waste Manag. 2019;21:326–335. doi:10.1007/s10163-018-0801-y
  • Olakanmi E, Olatunde O, Emmanuel A, et al. Mechanism of fiber/matrix bond and properties of wood polymer composites produced from alkaline-treated daniella oliveri wood flour. Polym Compos. 2016;15:2657–2672. doi:10.1002/pc.23460
  • Ratanawilai T, Taneerat K. Alternative polymeric matrices for wood-plastic composites: effects on mechanical properties and resistance to natural weathering. Constr Build Mater. 2018;172:349–357. doi:10.1016/j.conbuildmat.2018.03.266
  • Iwona M-P, Robert T, Tomasz R, et al. Towards the usage of image analysis technique to measure particles size and composition in wood-polymer composites. Ind Crop Prod. 2016;92:149–156. doi:10.1016/j.indcrop.2016.08.005
  • Suarez-Martnez P-C, Batys P, Sammalkorpi M, et al. Time-temperature and time-water superposition principles applied to poly(allylamine)/poly(acrylic acid) complexes. Macromolecules 2019;52:3066–3074. doi:10.1021/acs.macromol.8b02512
  • Ratanawilai T, Srivabut C. Physico-mechanical properties and long-term creep behavior of wood-plastic composites for construction materials: effect of water immersion times. Case Stud Constr Mater 2020;16:e00791. https://doi.org/10.1016/j.cscm.2021.e00791.
  • Hao X-L, Yi X, Sun L-C, et al. Mechanical properties, creep resistance, and dimensional stability of core/shell structured wood flour/polyethylene composites with highly filled core layer. Constr Build Mater. 2020;226:879–887. doi:10.1016/j.conbuildmat.2019.07.329
  • Alrubaie M-A-A, Lopez-Anido R-A, Gardner D-J, et al. Experimental investigation of the hygrothermal creep strain of wood-plastic composite lumber made from thermally modified wood. J Thermoplast Compos Mater. 2020;33:1248–1268. doi:10.1177/0892705718820398
  • Homkhiew C, Ratanawilai T, Thongruang W. Minimizing the creep of recycled polypropylene/rubberwood flour composites with mixture design experiments. J Compos Mater. 2015;49:17–26. doi:10.1177/0021998313514257
  • Yali L. Effect of coupling agent concentration, fiber content, and size on mechanical properties of wood/HDPE composites. Inter J Polym Mater Polym Bio. 2012;61:882–890. doi:10.1080/00914037.2011.617338
  • Khamtree S, Ratanawilai T, Ratanawilai S. The effect of alkaline–silane treatment of rubberwood flour for water absorption and mechanical properties of plastic composites. J Thermoplast Compos Mater. 2020;33:599–613. doi:10.1177/0892705718808556
  • Homkhiew C, Ratanawilai T, Thongruang W. The optimal formulation of recycled polypropylene/rubberwood flour composites from experiments with mixture design. Compos Part B Eng 2014;56:350–357. doi:10.1016/j.compositesb.2013.08.041
  • Behzad K, Ali V, Vahid C. Influence of chemical foaming agent on the physical, mechanical, and morphological properties of HDPE/wood flour/nanoclay composites. J Reinf Plast Compos 2016;30:1115–1124. doi:10.1177/0731684411417200.
  • Jiaqi L, Rongrong Q, Xinli H, et al. Preparation of soft wood-plastic composites. J Appl Polym Sci. 2013;130:39–46. doi:10.1002/app.38916
  • Georgiopoulos P, Kontou E, Christopoulos A. Short-term creep behavior of a biodegradable polymer reinforced with wood-fibers. Compos Part B Eng. 2015;80:134–144. doi:10.1016/j.compositesb.2015.05.046
  • Xu Y, Wu Q, Lei Y, et al. Creep behavior of bagasse fiber reinforced polymer composites. Bioresource Technol. 2010;101:3280–3286. doi:10.1016/j.biortech.2009.12.072
  • Tamrakar S, Lopez-Anido R-A, Kiziltas A, et al. Time and temperature dependent response of a wood-polypropylene composite. Compos Part A Appl Sci Manuf. 2011;42:834–842. doi:10.1016/j.compositesa.2011.03.011
  • Alrubaie M-A-A, Lopez-Anido R-A, Gardner D-J. Flexural creep behavior of high-density polyethylene lumber and wood plastic composite lumber made from thermally modified wood. Polymer 2020;12:1–13. doi:10.3390/polym12020262.
  • Nakada M, Miyamo Y, Cai H, et al. Prediction of long-term viscoelastic behavior of amorphous resin based on the time-temperature superposition principle. Mech Time-Depend Mater. 2011;15:309–316. doi:10.1007/s11043-011-9139-8
  • Subramanian C, Senthilvelan S. Short-term flexural creep behavior and model analysis of a glass-fiber-reinforced thermoplastic composite leaf spring. J Appl Polym Sci. 2011;120:3679–3686. doi:10.1002/app.33564
  • Srivabut C, Ratanawilai T, Hiziroglu S. Statistical modeling and response surface optimization on natural weathering of wood–plastic composites with calcium carbonate filler. J Mater Cycles Waste Manag. 2021;23:1503–1517. doi:10.1007/s10163-021-01230-7
  • Alhuthali I-A, Low I-M. Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Mater Sci. 2013;48:4260–4273. doi:10.1007/s10853-013-7240-x
  • Panaitescu D-M, Nicolae C-A, Vuluga Z, et al. Influence of hemp fibers with modified surface on polypropylene composites. J Ind Eng Chem. 2016;37:137–146. doi:10.1016/j.jiec.2016.03.018
  • Marlinda A-B-R, Kamaruddin N-H, Fadilah A-W, et al. Simple dispersion of graphene incorporated rubber composite for resistive pressure sensor application. Polym Eng Sci. 2021;58:1–9. doi:10.1002/pen.25668.
  • Mirna A-M, Norma E-M, Mirta I-A. Creep behavior of wood flour composites made from linseed oil-based polyester thermosets. J Appl Polym Sci. 2011;121:2626–2633. doi:10.1002/app.33989
  • Homkhiew C, Boonchouytan W, Cheewawuttipong W, et al. Potential utilization of rubberwood flour and sludge waste from natural rubber manufacturing process as reinforcement in plastic composites. J Mater Cycles Waste Manag. 2018;20:1792–1803. doi:10.1007/s10163-018-0749-y
  • Homkhiew C, Ratanawilai T, Thongruang W. Time-temperature and stress dependent behaviors of composites made from recycled polypropylene and rubberwood flour. Constr Build Mater. 2014;66:98–104. doi:10.1016/j.conbuildmat.2014.05.048
  • Chang F-C, Lam F, Kadla J-F. Application of time-temperature-stress superposition on creep of wood-plastic composites. J Mech Time-Depend Mater. 2013;17:356–373. doi:10.1007/s11043-012-9194-9.
  • Nunez A-J, Marcovich N-E, Aranguren M-I. Analysis of the creep behavior of polypropylene-wood flour composites. Polym Eng Sci. 2004;44:1594–1603. doi:10.1002/pen.20157

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.