108
Views
4
CrossRef citations to date
0
Altmetric
Original

Benefit of tianeptine and morphine in a transgenic model of familial amyotrophic lateral sclerosis

, &
Pages 32-37 | Received 18 Sep 2004, Accepted 18 Aug 2005, Published online: 10 Jul 2009

References

  • Deng H. X., Hentati A., Tainer J. A., Iqbal Z., Cayabyab A., Hung W. Y., et al. Amyotrophic lateral sclerosis and structural defects in Cu/Zn superoxide dismutase. Science 1993; 261:1047–50
  • Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59–62
  • Price D. L., Wong P. C., Becher M. W., et al. Familial amyotrophic lateral sclerosis and transgenic models. Neurosci News 1998; 1: 21–7
  • Gurney M. E., Pu H., Chiu A. Y., Dal Canto M. C., Polchow C. Y., Alexander D. D., Caliendo J., et al. Motor neuron degeneration in mice that express a human Cu/Zn superoxide dismutase mutation. Science 1994; 264: 1772–5
  • Dal Canto M. C., Gurney M. E. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu/Zn SOD, and in mice overexpressing wild‐type human SOD: a model of familial lateral sclerosis. Brain Res 199; 676: 25–40
  • Puig S., Rivot J. P., Besson J. M. Effects of tianeptine on 5‐hydroxyindoles and on the morphine‐induced increase in 5‐HT metabolism at the medullary dorsal horn level as measured by in vivo voltametry in freely moving rats. Brain Res 1993; 600: 219–24
  • Aanonsen L. M., Wilcox G. L. Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and sigma agonists. J.Pharmacol Exp Ther 1987; 243: 9–19
  • Wilde M. I., Benfield P. Tianeptine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depression and coexisting anxiety and depression. Drugs 1995; 49: 411–39
  • Fattaccini C. M., Bolanos‐Jimenez F., Gozlan H., Hamon M. Tianeptine stimulates uptake of 5‐hydroxytryptamine in vivo in the rat brain. Neuropharmacology 1990; 29: 1–8
  • Ortiz J., Mocaer E., Artigas F. Effects of the antidepressant drug tianeptine on plasma and platelet serotonin concentrations in the rat. Eur J Pharmacol 1991; 199: 335–9
  • Chamba G., Lemoine P., Flachaire E., Ferry N., Quincy C., Sassard J., et al. Increased serotonin platelet uptake after tianeptine administration in depressed patients. Biol Psychiat 1991; 30: 609–17
  • Frankfurt M., McKittrick C. R., McEwen B. S., Luine V. N. Tianeptine treatment induces regionally specific changes in monoamines. Brain Res 1995; 696: 1–6
  • Kato G., Weitch A. F. Neurochemical profile of tianeptine, a new antidepressant drug. Clin Neuropharmacol 1988; 11: 43–50
  • Bensimon G., Lacomblez L., Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 1994; 330: 585–591
  • Lacomblez L., Bensimon G., Leigh P. N., Meininger V. Dose‐ranging study of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group II. Lancet 1996; 347: 1425–31
  • Chritin M., Besson G., Mallaret M., Savasta M. Sclérose latérale amyotrophique et modèles animaux. Rev Neurol 2001; 157: 1351–61
  • Bruijn L. I., Cleveland D. W. Mechanisms of selective motor neuron death in ALS: insights from transgenic mouse models of motor neuron disease. Neuropathol Appl Neurobiol 1996; 22: 373–87
  • Tu P. H., Gurney M. E., Julien J. P., Lee V. M., Trojanowski J. Q., et al. Oxidative stress, mutant SOD1, and neurofilament pathology in transgenic mouse models of human motor disease. Lab Invest 1997; 76: 441–5
  • Gurney M. E., Cutting F. B., Zhai P., et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial lateral sclerosis. Ann Neurol 1996; 39: 147–57
  • Gurney M. E., Fleck T. J., Himes C. S., Hall E. D. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology 1998; 50: 62–6
  • Hottinger A. F., Fine E. G., Gurney M. E., Zurn A. D., Aebischer P., et al. The copper chelator d‐penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur J Neurosci 1997; 9: 1548–51
  • Nagano S., Ogawa Y., Yanagihara T., Sakoda S. Benefit of a combined treatment with trientine and ascorbate in familial amyotrophic lateral sclerosis model mice. Neurosci Lett 1999; 265: 159–62
  • Barneoud P., Curet O. Beneficial effects of lysine acetylsalicylate, a soluble salt of aspirin, on motor performance in a transgenic model of amyotrophic lateral sclerosis. Exp Neurol 1999; 155: 243–51
  • Benoit E., Escande D. Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre. Pflugers Arch 1991; 419: 603–9
  • Martin D., Thompson M. A., Nadler J. V. The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1. Eur J Pharmacol 1993; 250: 473–6
  • Hebert T., Drapeau P., Pradier L., Dunn R. J. Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole. Mol Pharmacol 1994; 45: 1055–60
  • Malgouris C., Daniel M., Doble A. Neuroprotective effects of riluzole on N‐methyl‐D‐aspartate‐ or veratridine‐induced neurotoxicity in rat hippocampal slices. Neurosci Lett 1994; 177: 95–9
  • Uzbay I. T., Cinar M. G., Aytemir M., Tuglular I. Analgesic effect of tianeptine in mice. Life Sci 1999; 64: 1313–9
  • Bowker R. M., Westlund K. N., Sullivan M. C., Coutler J. D. Organization of descending serotoninergic projections to the spinal cord. Prog Brain Res 1982; 57: 239–98
  • Marlier L., Teilhac J. R., Cerruti C., Privat A. Autoradiographic mapping of 5‐HT1, 5‐HT1A, 5‐HT1B and 5‐HT2 receptors in the rat spinal cord. Brain Res 1991; 550: 15–23
  • Dziedzicka‐Wasylewska M., Rogoz Z., Skuza G., Dlaboga D., Maj J., et al. Effect of repeated treatment with tianeptine and fluoxetine on central dopamine D2/D3 receptors. Behav Pharmacol 2002; 13: 127–38
  • Chen L., Huang L. ‐. Y. M. Sustained potentiation of NMDA receptor‐mediated glutamate response through activation of protein kinase C by a µ opioid. Neuron 1991; 7: 319–26
  • Elmer G. I., Evans J. L., Ladenheim B., Epstein C. J., Cadet J. L., et al. Transgenic superoxide dismutase mice differ in opioid‐induced analgesia. Eur J Pharmacol 1995; 283: 227–32
  • Marzullo G., Hine B. Opiate receptor function may be modulated through an oxidation‐reduction mechanism. Science 1980; 283: 227–32
  • Vezina P., Stewart J. The effect of dopamine receptor blockade on the development of sensitization to the locomotor activating effects of amphetamine and morphine. Brain Res 1989; 499: 108–20
  • Murphy N. P., Lam H. A., Maidment N. T. A comparison of morphine‐induced locomotor and mesolimbic dopamine release in C57BL6, 129Sv and DBA2 mice. J Neurochem 2001; 79: 626–35
  • Woo S. H., Kim H. S. Inhibition of diazepam on morphine‐induced hyperactivity, reverse tolerance and post‐synaptic dopamine receptor supersensitivity. Pharmacol Res 2001; 44: 467–72
  • Del Rosario C. N., Pacchioni A. M., Cancela L. M. Influence of acute and repeated restraint stress on morphine‐induced locomotion: involvement of dopamine, opioid and glutamate receptors. Behav Brain Res 2002; 134: 229–38
  • Drouin C., Darracq L., Trovero F., Blanc G., Glowinski J., Cotecchia S., Tassin J. P., et al. Alpha1b‐adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci 2002; 22: 2873–84
  • Airio J., Ahtee L. The involvement of noradrenergic transmission in the morphine‐induced locomotor hyperactivity in mice withdrawn from repeated morphine treatment. Br J Pharmacol 1999; 126: 1609–19
  • Handal M., Grung M., Skurtveit S., Ripel A., Morland J., et al. Pharmacokinetic differences of morphine and morphine‐glucuronides are reflected in locomotor activity. Pharmacol Biochem Behav 2002; 73: 883–92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.