Publication Cover
Cochlear Implants International
An Interdisciplinary Journal for Implantable Hearing Devices
Volume 22, 2021 - Issue 3
1,406
Views
1
CrossRef citations to date
0
Altmetric
Original articles

Slope of electrically evoked compound action potential amplitude growth function is site-dependent

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdel Salam, S., Tayel, S., Mehanna, A., Eid, M., Afifi, W. 2013. Comparison of scalar location and insertion depth of cochlear implant electrode implanted through the round window versus cochleostomy approach. Journal of International Advanced Otology, 9(1): 30–37.
  • Ariyasu, L., Galey, F.R., Hilsinger, R., Byl, F.M. 1989. Computer-generated three-dimensional reconstruction of the cochlea. Otolaryngology – Head and Neck Surgery, 100(2): 87–91. doi:10.1177/019459988910000201.
  • Bai, S., Encke, J., Obando-Leitón, M., Weiß, R., Schäfer, F., Eberharter, J., et al. 2019. Electrical stimulation in the human cochlea: A computational study based on high-resolution micro-CT scans. Frontiers in Neuroscience, 13: 1312. doi:10.3389/fnins.2019.01312.
  • Bates, D., Mächler, M., Bolker, B., Walker, S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1): 1–48. doi:10.18637/jss.v067.i01.
  • Berger, K., Hocke, T., Hessel, H. 2017. Loudness optimized registration of compound action potential in cochlear implant recipients. Laryngo-Rhino-Otologie, 96(11): 780–786. doi:10.1055/s-0043-119292.
  • Briaire, J.J., Frijns, J.H.M. 2005. Unraveling the electrically evoked compound action potential. Hearing Research, 205(1–2): 143–156. doi:10.1016/j.heares.2005.03.020.
  • Brill, S., Müller, J., Hagen, R., Möltner, A., Brockmeier, S.-J., Stark, T., et al. 2009. Site of cochlear stimulation and its effect on electrically evoked compound action potentials using the MED-EL standard electrode array. BioMedical Engineering OnLine, 8. doi:10.1186/1475-925X-8-40.
  • Brown, C.J., Abbas, P.J., Etler, C.P., O’Brien, S., Oleson, J.J. 2010. Effects of long-term use of a cochlear implant on the electrically evoked compound action potential. Journal of the American Academy of Audiology, 21(1): 5–15. doi:10.3766/jaaa.21.1.2.
  • Chiou, L.-K. 2016. The effect that design of the nucleus intracochlear electrode array and age of onset of hearing loss have on electrically evoked compound action potential growth and spread of excitation functions [dissertation]. Iowa: University of Iowa. doi:10.17077/etd.gko4dc57 .
  • Christov, F., Munder, P., Berg, L., Bagus, H., Lang, S., Arweiler-Harbeck, D. 2016. ECAP analysis in cochlear implant patients as a function of patient’s age and electrode-design. European Annals of Otorhinolaryngology, Head and Neck Diseases, 133(Suppl 1): S1–S3. doi:10.1016/j.anorl.2016.04.015.
  • Cohen, B.E., Durstenfeld, A., Roehm, P.C. 2014. Viral causes of hearing loss: A review for hearing health professionals. Trends in Hearing, 18. doi:10.1177/2331216514541361.
  • Cullington, H.E. (Ed.). 2003. Cochlear implants: Objective measures. London, Philadelphia: Whurr Publishers.
  • Dees, C., Dillier, D., Lai, N., Wallenberg, W.K., von, E., van Dijk, B., et al. 2005. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the nucleus CI24M cochlear implant system. Audiology and Neurotology, 10(2): 105–116. doi:10.1159/000083366.
  • Dhanasingh, A., Jolly, C. 2017. An overview of cochlear implant electrode array designs. Hearing Research, 356: 93–103. doi:10.1016/j.heares.2017.10.005.
  • Dhanasingh, A.E., Rajan, G., van de Heyning, P. 2020. Presence of the spiral ganglion cell bodies beyond the basal turn of the human cochlea. Cochlear Implants International, 21(3): 145–152. doi:10.1080/14670100.2019.1694226.
  • Erixon, E., Högstorp, H., Wadin, K., Rask-Andersen, H. 2009. Variational anatomy of the human cochlea: Implications for cochlear implantation. Otology & Neurotology, 30(1): 14–22. doi:10.1097/MAO.0b013e31818a08e8.
  • Frijns, J.H.M., Briaire, J.J., Laat, J.A.P.M. de, Grote, J.J. 2002. Initial evaluation of the Clarion CII cochlear implant: Speech perception and neural response imaging. Ear and Hearing, 23(3): 184–197. doi:10.1097/00003446-200206000-00003.
  • Hall, R.D. 1990. Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response. Hearing Research, 49(1-3): 155–168. doi:10.1016/0378-5955(90)90102-U.
  • He, S., Shahsavarani, B.S., McFayden, T.C., Wang, H., Gill, K.E., Xu, L., et al. 2018. Responsiveness of the electrically stimulated cochlear nerve in children with cochlear nerve deficiency. Ear and Hearing, 39(2): 238–250. doi:10.1097/AUD.0000000000000467.
  • Hochmair, I., Arnold, W., Nopp, P., Jolly, C., Muller, J., Roland, P. 2003. Deep electrode insertion in cochlear implants: Apical morphology, electrodes and speech perception results. Acta Oto-laryngologica, 123(5): 612–617. doi:10.1080/00016480310001844.
  • Hothorn, T., Bretz, F., Westfall, P. 2008. Simultaneous inference in general parametric models. Biometrical Journal. Biometrische Zeitschrift, 50(3): 346–363. doi:10.1002/bimj.200810425.
  • Hughes, M.L., Vander-Werff, K.R., Brown, C.J., Abbas, P.J., Kelsay, D.M., Teagle, H.F., Lowder, M.W. 2001. A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in Nucleus 24 cochlear implant users. Ear and Hearing, 22(6): 471–486. doi:10.1097/00003446-200112000-00004.
  • Jiam, N.T., Jiradejvong, P., Pearl, M.S., Limb, C.J. 2016. The effect of round window vs cochleostomy surgical approaches on cochlear implant electrode position: A flat-panel computed tomography study. JAMA Otolaryngology – Head & Neck Surgery, 142(9): 873–880. doi:10.1001/jamaoto.2016.1512.
  • Jiam, N.T., Limb, C.J. 2016. The impact of round window vs cochleostomy surgical approaches on interscalar excursions in the cochlea: Preliminary results from a flat-panel computed tomography study. World Journal of Otorhinolaryngology – Head and Neck Surgery, 2(3): 142–147. doi:10.1016/j.wjorl.2016.07.001.
  • Kawano, A., Seldon, H.L., Clark, G.M. 1996. Computer-aided three-dimensional reconstruction in human cochlear maps: Measurement of the lengths of organ of Corti, outer wall, inner wall, and Rosenthal’s canal. Annals of Otology, Rhinology & Laryngology, 105(9): 701–709. doi:10.1177/000348949610500906.
  • Kim, J.-R., Abbas, P.J., Brown, C.J., Etler, C.P., O’Brien, S., Kim, L.-S. 2010. The relationship between electrically evoked compound action potential and speech perception: A study in cochlear implant users with short electrode array. Otology & Neurotology, 31(7): 1041–1048. doi:10.1097/MAO.0b013e3181ec1d92.
  • Kosaner, J., Spitzer, P., Bayguzina, S., Gultekin, M., Behar, L.A. 2018. Comparing eSRT and eCAP measurements in pediatric MED-EL cochlear implant users. Cochlear Implants International, 19(3): 153–161. doi:10.1080/14670100.2017.1416759.
  • Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B. 2017. lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82: 13. doi:10.18637/jss.v082.i13.
  • Lai, W.K., Aksit, M., Akdas, F., Dillier, N. 2004. Longitudinal behaviour of neural response telemetry (NRT) data and clinical implications. International Journal of Audiology, 43(5): 252–263. doi:10.1080/14992020400050034.
  • Lai, W.K., Dillier, N. 2000. A simple two-component model of the electrically evoked compound action potential in the human cochlea. Audiology and Neurotology, 5(6): 333–345. doi:10.1159/000013899.
  • Liberman, M.C., Kujawa, S.G. 2017. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hearing Research, 349: 138–147. doi:10.1016/j.heares.2017.01.003.
  • Micco, A.G., Richter, C.-P. 2006. Tissue resistivities determine the current flow in the cochlea. Current Opinion in Otolaryngology & Head and Neck Surgery, 14(5): 352–355. doi:10.1097/01.moo.0000244195.04926.a0.
  • Miller, C.A., Brown, C.J., Abbas, P.J., Chi, S.-L. 2008. The clinical application of potentials evoked from the peripheral auditory system. Hearing Research, 242(1-2): 184–197. doi:10.1016/j.heares.2008.04.005.
  • Müller, A., Feick, J., Dziemba, O.C., Mir-Salim, P. 2016. Objective diagnostics and therapy of hearing loss several years after cochlear implant. Laryngo-Rhino-Otologie, 95(9): 634–635. doi:10.1055/s-0042-107352.
  • Müller, A., Hocke, T., Mir-Salim, P. 2015. Intraoperative findings on ECAP-measurement: Normal or special case? International Journal of Audiology, 54(4): 257–264. doi:10.3109/14992027.2014.969410.
  • Nadol Jr., J.B. 1997. Patterns of neural degeneration in the human cochlea and auditory nerve: Implications for cochlear implantation. Otolaryngology – Head and Neck Surgery, 117(3): 220–228. doi:10.1016/S0194-5998(97)70178-5.
  • Nehmé, A., El Zir, E., Moukarzel, N., Haidar, H., Vanpoucke, F., Arnold, L. 2014. Measures of the electrically evoked compound action potential threshold and slope in HiRes 90K™ users. Cochlear Implants International, 15(1): 53–60. doi:10.1179/1754762813Y.0000000039.
  • Patel, R., McKinnon, B.J. 2018. Hearing loss in the elderly. Clinics in Geriatric Medicine, 34(2): 163–174. doi:10.1016/j.cger.2018.01.001.
  • Pfingst, B.E., Colesa, D.J., Swiderski, D.L., Hughes, A.P., Strahl, S.B., Sinan, M., Raphael, Y. 2017. Neurotrophin gene therapy in deafened ears with cochlear implants: Long-term effects on nerve survival and functional measures. Journal of the Association for Research in Otolaryngology, 18(6): 731–750. doi:10.1007/s10162-017-0633-9.
  • Pfingst, B.E., Hughes, A.P., Colesa, D.J., Watts, M.M., Strahl, S.B., Raphael, Y. 2015. Insertion trauma and recovery of function after cochlear implantation: Evidence from objective functional measures. Hearing Research, 330: 98–105. doi:10.1016/j.heares.2015.07.010.
  • Polak, M., Hodges, A.V., King, J.E., Balkany, T.J., Polak, M., King, J.E., Balkany, T.J. 2004. Further prospective findings with compound action potentials from Nucleus 24 cochlear implants. Hearing Research, 188(1-2): 104–116. doi:10.1016/S0378-5955(03)00309-5.
  • Rader, T., Döge, J., Adel, Y., Weissgerber, T., Baumann, U. 2016. Place dependent stimulation rates improve pitch perception in cochlear implantees with single-sided deafness. Hearing Research, 339: 94–103. doi:10.1016/j.heares.2016.06.013.
  • Ramekers, D., Versnel, H., Strahl, S.B., Smeets, E.M., Klis, S.F.L., Grolman, W. 2014. Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration. Journal of the Association for Research in Otolaryngology, 15(2): 187–202. doi:10.1007/s10162-013-0440-x.
  • Rattay, F. 1986. Analysis of models for external stimulation of axons. IEEE Transactions on Biomedical Engineering, 33(10): 974–977. doi:10.1109/TBME.1986.325670.
  • R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria. Available from: https://www.R-project.org/.
  • Schvartz-Leyzac, K.C., Pfingst, B.E. 2016. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap. Hearing Research, 341: 50–65. doi:10.1016/j.heares.2016.08.002.
  • Stakhovskaya, O., Sridhar, D., Bonham, B.H., Leake, P.A. 2007. Frequency map for the human cochlear spiral ganglion: Implications for cochlear implants. Journal of the Association for Research in Otolaryngology, 8(2): 220–233. doi:10.1007/s10162-007-0076-9.
  • Tanamati, L.F., Bevilacqua, M.C., Costa, O.A. 2009. Longitudinal study of the ecap measured in children with cochlear implants. Brazilian Journal of Otorhinolaryngology, 75(1): 90–96. doi:10.1016/S1808-8694(15)30837-5.
  • Telmesani, L.M., Said, N.M. 2016. Electrically evoked compound action potential (ECAP) in cochlear implant children: Changes in auditory nerve response in first year of cochlear implant use. International Journal of Pediatric Otorhinolaryngology, 82: 28–33. doi:10.1016/j.ijporl.2015.12.027.
  • van de Heyning, P., Arauz, S.L., Atlas, M., Baumgartner, W.-D., Caversaccio, M., Chester-Browne, R., et al. 2016. Electrically evoked compound action potentials are different depending on the site of cochlear stimulation. Cochlear Implants International, 17(6): 251–262. doi:10.1080/14670100.2016.1240427.
  • van Eijl, R.H.M., Buitenhuis, P.J., Stegeman, I., Klis, S.F.L., Grolman, W. 2017. Systematic review of compound action potentials as predictors for cochlear implant performance. The Laryngoscope, 127(2): 476–487. doi:10.1002/lary.26154.
  • Wanna, G.B., Noble, J.H., Carlson, M.L., Gifford, R.H., Dietrich, M.S., Haynes, D.S., et al. 2014. Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. The Laryngoscope, 124(Suppl 6): S1–S7. doi:10.1002/lary.24728.
  • Wanna, G.B., Noble, J.H., Gifford, R.H., Dietrich, M.S., Sweeney, A.D., Zhang, D., et al. 2015. Impact of intrascalar electrode location, electrode type, and angular insertion depth on residual hearing in cochlear implant patients: Preliminary results. Otology & Neurotology, 36(8): 1343–1348. doi:10.1097/MAO.0000000000000829.
  • Wesarg, T., Battmer, R.-D., Garrido, L.C., Dillier, N., Garcia-Ibáñez, L., Hey, M., et al. 2010. Effect of changing pulse rate on profile parameters of perceptual thresholds and loudness comfort levels and relation to ECAP thresholds in recipients of the Nucleus CI24RE device. International Journal of Audiology, 49(10): 775–787. doi:10.3109/14992027.2010.492401.
  • Westen, A.A., Dekker, D.M.T., Briaire, J.J., Frijns, J.H.M. 2011. Stimulus level effects on neural excitation and eCAP amplitude. Hearing Research, 280(1–2): 166–176. doi:10.1016/j.heares.2011.05.014.
  • Zhou, L., Friedmann, D.R., Treaba, C., Peng, R., Roland, J.T. 2014. Does cochleostomy location influence electrode trajectory and intracochlear trauma? Cochlear Implants International, 15(Suppl 1): S8–S10. doi:10.1179/1467010014Z.000000000160.