Publication Cover
Cochlear Implants International
An Interdisciplinary Journal for Implantable Hearing Devices
Volume 25, 2024 - Issue 1
128
Views
0
CrossRef citations to date
0
Altmetric
Original articles

The association between electrode impedance and short-term outcomes in cochlear implant recipients of slim modiolar and slim straight electrode arrays

ORCID Icon, , &

References

  • Adunka, O.F., Gantz, B.J., Dunn, C., Gurgel, R.K., Buchman, C.A. 2018. Minimum reporting standards for adult cochlear implantation. Otolaryngology–Head and Neck Surgery, 159(2): 215–219. doi:10.1177/0194599818764329.
  • Buchman, C.A., Herzog, J.A., McJunkin, J.L., Wick, C.C., Durakovic, N., Firszt, J.B., et al. 2020. Assessment of speech understanding after cochlear implantation in adult hearing aid users: a nonrandomized controlled trial. JAMA Otolaryngology–Head & Neck Surgery, 146(10): 916–924. doi:10.1001/jamaoto.2020.1584.
  • Carlson, M.L., Driscoll, C.L.W., Gifford, R.H., Service, G.J., Tombers, N.M., Hughes-Borst, B.J., et al. 2011. Implications of minimizing trauma during conventional cochlear implantation. Otology & Neurotology, 32(6): 962–968. doi:10.1097/MAO.0b013e3182204526.
  • Caswell-Midwinter, B., Doney, E.M., Arjmandi, M.K., Jahn, K.N., Herrmann, B.S., Arenberg, J.G. 2022. The relationship between impedance, programming and word recognition in a large clinical dataset of cochlear implant recipients. Trends in Hearing, 26: 233121652110609. doi:10.1177/23312165211060983.
  • Choi, J., Payne, M.R., Campbell, L.J., Bester, C.W., Newbold, C., Eastwood, H., O’Leary, S. 2017. Electrode impedance fluctuations as a biomarker for inner ear pathology after cochlear implantation. Otology & Neurotology, 38(10): 1433–1439. doi:10.1097/MAO.0000000000001589.
  • Clark, G.M., Shute, S.A., Shepherd, R.K., Carter, T.D. 1995. Cochlear implantation: osteoneogenesis, electrode-tissue impedance, and residual hearing. The Annals of Otology, Rhinology, & Laryngology Supplement, 166: 40–42.
  • Cuda, D., Murri, A. 2017. Cochlear implantation with the nucleus slim modiolar electrode (CI532): a preliminary experience. European Archives of Otorhinolaryngology, 274(12): 4141–4148. doi:10.1007/s00405-017-4774-6.
  • Degen, C.V., Büchner, A., Kludt, E., Lenarz, T. 2020. Effect of electrode to modiolus distance on electrophysiological and psychophysical parameters in CI patients with perimodiolar and lateral electrode arrays. Otology & Neurotology, 41(9): e1091–e1097. doi:10.1097/MAO.0000000000002751.
  • de Graaf, F., Lissenberg-White, B.I., Kaandorp, M.W., Merkus, P., Goverts, S.T., Kramer, S.E., Smits, C. 2020. Relationship between speech recognition in quiet and noise and fitting parameters, impedances and ECAP thresholds in adult cochlear implant users. Ear & Hearing, 41(4): 935–947. doi:10.1097/AUD.0000000000000814.
  • Dillon, M.T., Buss, E., Adunka, M.C., King, E.R., Pillsbury, H.C., Adunka, O.F., Buchman, C.A. 2013. Long-term speech perception in elderly cochlear implant users. JAMA Otolaryngology–Head & Neck Surgery, 139(3): 279–283. doi:10.1001/jamaoto.2013.1814.
  • Dong, Y., Briaire, J.J., Siebrecht, M., Stronks, H.C., Frijns, J.H.M. 2021. Detection of translocation of cochlear implant electrode arrays by intracochlear impedance measurements. Ear & Hearing, 42(5): 1397–1404. doi:10.1097/AUD.0000000000001033.
  • Giardina, C.K., Krause, E.S., Koka, K., Fitzpatrick, D.C. 2018. Impedance measures during in vitro cochlear implantation predict array positioning. IEEE Transactions on Biomedical Engineering, 65(2): 327–335. doi:10.1109/TBME.2017.2764881.
  • Heutink, F., Klabbers, T.M., Huinck, W.J., Lucev, F., van der Woude, W.J., Mylanus, E.A.M., Verbist, B.M. 2022. Ultra-high-resolution CT to detect intracochlear new bone formation after cochlear implantation. Radiology, 302(3): 605–612. doi:10.1148/radiol.211400.
  • Hughes, M.L., Abbas, P.J. 2006. Electrophysiologic channel interaction, electrode pitch ranking, and behavioral threshold in straight versus perimodiolar cochlear implant electrode arrays. The Journal of the Acoustical Society of America, 119(3): 1538–1547. doi:10.1121/1.2164969.
  • Hughes, M.L., Vander Werff, K.R., Brown, C.J., Abbas, P.J., Kelsay, D.M., Teagle, H.F., Lowder, M.W. 2001. A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in Nucleus 24 cochlear implant users. Ear and Hearing, 22(6): 471–486. doi:10.1097/00003446-200112000-00004.
  • Ishai, R., Herrmann, B.S., Nadol Jr, J.B., Quesnel, A.M. 2017. The pattern and degree of capsular fibrous sheaths surrounding cochlear electrode arrays. Hearing Research, 348: 44–53. doi:10.1016/j.heares.2017.02.012.
  • Jwair, S., Prins, A., Wegner, I., Stokroos, R.J., Versnel, H., Thomeer, H.G.X.M. 2021. Scalar translocation comparison between lateral wall and perimodiolar cochlear implant arrays - a meta-analysis. The Laryngoscope, 131(6): 1358–1368. doi:10.1002/lary.29224.
  • Kamakura, T., Nadol Jr, J.B. 2016. Correlation between word recognition score and intracochlear new bone and fibrous tissue after cochlear implantation in the human. Hearing Research, 339: 132–141. doi:10.1016/j.heares.2016.06.015.
  • Konrad, S., Framke, T., Kludt, E., Büchner, A., Lenarz, T., Paasche, G. 2021. Do impedance changes correlate with a delayed hearing loss after Hybrid L24 implantation? Ear & Hearing, 42(1): 163–172. doi:10.1097/AUD.0000000000000914.
  • Lenarz, M., Sönmez, H., Joseph, G., Büchner, A., Lenarz, T. 2012. Long-term performance of cochlear implants in postlingually deafened adults. Otolaryngology–Head and Neck Surgery, 147(1): 112–118. doi:10.1177/0194599812438041.
  • Ma, C., Fried, J., Nguyen, S.A., Schvartz-Leyzac, K.C., Camposeo, E.L., Meyer, T.A., et al. 2023. Longitudinal speech recognition changes after cochlear implant: systematic review and meta-analysis. The Laryngoscope, 133(5): 1014–1024. doi:10.1002/lary.30354.
  • Moran, M., Dowell, R.C., Iseli, C., Briggs, R.J.S. 2017. Hearing preservation outcomes for 139 cochlear implant recipients using a thin straight electrode array. Otology & Neurotology, 38(5): 678–684. doi:10.1097/MAO.0000000000001374.
  • Newbold, C., Mergen, S., Richardson, R., Seligman, P., Millard, R., Cowan, R., Shepherd, R. 2014. Impedance changes in chronically implanted and stimulated cochlear implant electrodes. Cochlear Implants International, 15(4): 191–199. doi:10.1179/1754762813Y.0000000050.
  • Ni, D., Shepherd, R.K., Seldon, H.L., Xu, S.A., Clark, G.M., Millard, R.E. 1992. Cochlear pathology following chronic electrical stimulation of the auditory nerve. I: normal hearing kittens. Hearing Research, 62(1): 63–81. doi:10.1016/0378-5955(92)90203-y.
  • Prenzler, N.K., Tobias, W., Steffens, M., Lesinski-Schiedat, A., Büchner, A., Lenarz, T., Warnecke, A. 2020. Impedance values do not correlate with speech understanding in cochlear implant recipients. Otology & Neurotology, 41(8): e1029–e1034. doi:10.1097/MAO.0000000000002743.
  • Scheperle, R.A., Tejani, V.D., Omtvedt, J.K., Brown, C.J., Abbas, P.J., Hansen, M.R., et al. 2017. Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing. Hearing Research, 350: 45–57. doi:10.1016/j.heares.2017.04.005.
  • Shaul, C., Bester, C.W., Weder, S., Choi, J., Eastwood, H., Padmavathi, K.V., et al. 2019. Electrical impedance as a biomarker for inner ear pathology following lateral wall and peri-modiolar cochlear implantation. Otology & Neurotology, 40(5): e518–e526. doi:10.1097/MAO.0000000000002227.
  • Studebaker, G.A. 1985. A "rationalized" arcsine transform. Journal of Speech, Language, and Hearing Research, 28(3): 455–462. doi:10.1044/jshr.2803.455.
  • Tejani, V., Yang, H., Kim, J.-S., Hernandez, H., Oleson, J.J., Hansen, M.R., et al. 2022. Access and polarization electrode impedance changes in electric-acoustic stimulation cochlear implant users with delayed loss of acoustic hearing. Journal of the Association for Research in Otolaryngology, 23(1): 95–118. doi:10.1007/s10162-021-00809-z.
  • Thompson, N.J., Dillon, M.T., Buss, E., Park, L.R., Pillsbury 3rd, H.C., O’Connell, B.P., Brown, K.D. 2020. Electrode array type and its impact on impedance fluctuations and loss of residual hearing in cochlear implantation. Otology & Neurotology, 41(2): 186–191. doi:10.1097/MAO.0000000000002457.
  • Tykocinski, M., Cohen, L.T., Cowan, R.S. 2005. Measurement and analysis of access resistance and polarization impedance in cochlear implant recipients. Otology & Neurotology, 26(5): 948–956. doi:10.1097/01.mao.0000185056.99888.f3.
  • Velandia, S., Martinez, D., Goncalves, S., Pena, S., Bas, E., Ein, L., et al. 2020. Effect of age, electrode array, and time on cochlear implant impedances. Cochlear Implants International, 21(6): 344–352.
  • Wanna, G.B., Noble, J.H., Carlson, M.L., Gifford, R.H., Dietrich, M.S., Haynes, D.S., et al. 2014. Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. The Laryngoscope, 124(S6): S1–S7. doi:10.1002/lary.24728.
  • Wilk, M., Hessler, R., Mugridge, K., Jolly, C., Fehr, M., Lenarz, T., Scheper, V. 2016. Impedance changes and fibrous tissue growth after cochlear implantation are correlated and can be reduced using a dexamethasone eluting electrode. PLoS One, 11(2): e0147552. doi:10.1371/journal.pone.0147552.
  • Wimmer, W., Sclabas, L., Caversaccio, M., Weder, S. 2022. Cochlear implant electrode impedance as potential biomarker for residual hearing. Frontiers in Neurology, 13: 886171. doi:10.3389/fneur.2022.886171.
  • Woodson, E., Smeal, M., Nelson, R.C., Haberkamp, T., Sydlowski, S. 2020. Slim perimodiolar arrays are as effective as slim lateral wall arrays for functional hearing preservation after cochlear implantation. Otology & Neurotology, 41(6): e674–e679. doi:10.1097/MAO.0000000000002622.
  • Wright, C.G., Roland, P.S. 2013. Vascular trauma during cochlear implantation: a contributor to residual hearing loss? Otology & Neurotology, 34(3): 402–407. doi:10.1097/MAO.0b013e318278509a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.