1,567
Views
78
CrossRef citations to date
0
Altmetric
Scientific papers

Recognition of asphalt pavement crack length using deep convolutional neural networks

, , &
Pages 1334-1349 | Received 07 Jul 2016, Accepted 09 Mar 2017, Published online: 04 Apr 2017

References

  • Barat, C., & Ducottet, C. (2016). String representations and distances in deep convolutional neural networks for image classification. Pattern Recognition, 54, 104–115. doi: 10.1016/j.patcog.2016.01.007
  • Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828. doi: 10.1109/TPAMI.2013.50
  • Bona, A. D., Borba, M., Benetti, P., Duan, Y., & Griggs, J. A. (2013). Three-dimensional finite element modelling of all-ceramic restorations based on micro-CT. Journal of Dentistry, 41(5), 412–419. doi: 10.1016/j.jdent.2013.02.014
  • Bursanescu, L., & Blais, F. (1997). Automated pavement distress data collection and analysis: A 3-D approach. Digital Identity Management, 311–317. doi: 10.1109/IM.1997.603881
  • Clemencon, S., Bellet, A., Jelassi, O., & Papa, G. (2015). Scalability of stochastic gradient descent based on “smart” sampling techniques. Procedia Computer Science, 53, 308–315. doi: 10.1016/j.procs.2015.07.308
  • Dong, Y., Liu, Y., & Lian, S. (2016). Automatic age estimation based on deep learning algorithm. Neurocomputing, 187, 4–10. doi: 10.1016/j.neucom.2015.09.115
  • Erdal, K., & Khanesar, M. A. (2016). Chapter 5 – gradient descent methods for type-2 fuzzy neural networks. Fuzzy Neural Networks for Real Time Control Applications, Butterworth-Heinemann, 45–70. doi: 10.1016/B978-0-12-802687-8.00005-0
  • Fukuhara, T., Terada, K., Nagao, M., Kasahara, A., & Ichihashi, S. (1990). Automatic pavement – distress – survey system. Journal of Transportation Engineering-ASCE, 116(3), 280–286. doi: 10.1061/(ASCE)0733-947X(1990)116:3(280)
  • Fukushima, K. (1984). Pattern recognition and the neocognitron. Journal of the Institute of Television Engineers of Japan, 38(3), 212–218. Retrieved from https://www.jstage.jst.go.jp/article/itej1978/38/3/38_3_212/_article doi: 10.3169/itej1978.38.212
  • Goodfellow, I. J., Courville, A., & Bengio, Y. (2013). Joint training deep Boltzmann machines for classification. Computer Science, May 1, 1–11.
  • Guo, Q., Wang, F., Lei, J., Tu, D., & Li, G. (2016). Convolutional feature learning and hybrid CNN-HMM for scene number recognition. Neurocomputing, 184(4), 78–90. doi: 10.1016/j.neucom.2015.07.135
  • Hinton, G. E., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. doi: 10.1126/science.1127647
  • Hu, Y., Chang, H., Nian, F., Wang, Y., & Li, T. (2016). Dense crowd counting from still images with convolutional neural networks. Journal of Visual Communication and Image Representation, 38, 530–539. doi: 10.1016/j.jvcir.2016.03.021
  • Ijjina, E. P., & Chalavadi, K. M. (2016). Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recognition, 59, 199–212. doi: 10.1016/j.patcog.2016.01.012
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. 26th annual conference on neural information processing systems (pp. 1097–1105). Lake Tahoe, NV.
  • Larochelle, H., Mandel, M. I., Pascanu, R., & Bengio, Y. (2012). Learning algorithms for the classification restricted Boltzmann machine. Journal of Machine Learning Research, 13(1), 643–669.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi: 10.1038/nature14539
  • Leng, B., Guo, S., Zhang, X., & Xiong, Z. (2015). 3D object retrieval with stacked local convolutional autoencoder. Signal Processing, 112, 119–128. doi: 10.1016/j.sigpro.2014.09.005
  • Liu, Z., Zhang, J., & Liu, L. (2016). Upright orientation of 3D shapes with convolutional networks. Graphical Models Graphical Models Vgraphical Models and Image Processing Vcomputer Vision, Graphics, and Image Processing, 85, 22–29. doi: 10.1016/j.gmod.2016.03.001
  • Luo, W., Li, L., & Wang, K. C. P. (2016). Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data. Journal of Traffic and Transportation Engineering (English Edition), 3(2), 137–145. doi: 16/j.jtte.2016.03.004
  • Nian, F., Li, T., Wang, Y., Xu, M., & Wu, J. (2016). Pornographic image detection utilizing deep convolutional neural networks. Neurocomputing, 210, 283–293. doi: 10.1016/j.neucom.2015.09.135
  • Prasad, B. K., Eskandari, H., & Reddy, B. V. (2009). Prediction of compressive strength of SCC and HPC with high volume Fly ash using ANN. Construction and Building Materials, 23(1), 117–128. doi: 10.1016/j.conbuildmat.2008.01.014
  • Senov, A. A. (2015). Improving distributed stochastic gradient descent estimate via loss function approximation. IFAC-PapersOnLine, 48(25), 292–297. doi: 10.1016/j.ifacol.2015.11.103
  • Shafabakhsh, G. H., Ani, O. J., & Talebsafa, M. (2015). Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates. Construction and Building Materials, 85, 136–143. doi: 10.1016/j.conbuildmat.2015.03.060
  • Shi, B., Bai, X., & Yao, C. (2016). Script identification in the wild via discriminative convolutional neural network. Pattern Recognition, 52, 448–458. doi: 10.1016/j.patcog.2015.11.005
  • Shi, X. L., Schillings, P., & Boyd, D. W. (2004). Applying artificial neural networks and virtual experimental design to quality improvement of two industrial processes. International Journal of Production Research, 42(1), 101–118. doi: 10.1080/00207540310001602937
  • Shi, Y., Si, L., Feng, G., & Zhang, J. (2016). Numerical and experimental study on liquid crystal optical phased array beam steering combined with stochastic parallel gradient descent algorithm. Optik – International Journal for Light and Electron Optics, 127(3), 1450–1454. doi: 10.1016/j.ijleo.2015.11.023
  • Shu, Z., Qi, C., Xin, S., Hu, C., Wang, L., Zhang, Y., & Liu, L. (2016). Unsupervised 3D shape segmentation and co-segmentation via deep learning. Computer Aided Geometric Design, 43(3), 39–52. doi: 10.1016/j.cagd.2016.02.015
  • Sopyla, K., & Drozda, P. (2015). Stochastic gradient descent with Barzilai-Borwein update step for SVM. Information Sciences, 316, 218–233. doi: 10.1016/j.ins.2015.03.073
  • Xiao, F., Amirkhanian, S. N., & Juang, C. H. (2009). Prediction of fatigue life of rubberized asphalt concrete mixtures containing reclaimed asphalt pavement using artificial neural networks. Journal of Materials in Civil Engineering, 21(6), 253–261. doi: 10.1061/(ASCE)0899-1561(2009)21:6(253)
  • Xu, J., Luo, X., Wang, G., Gilmore, H., & Madabhushi, A. (2016). A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing, 191(5), 214–223. doi: 10.1016/j.neucom.2016.01.034
  • Xu, T., Zhu, F., Wong, E. K., & Fang, Y. (2016). Dual many-to-one-encoder-based transfer learning for cross-dataset human action recognition. Image and Vision Computing, 55, 127–137. doi: 10.1016/j.imavis.2016.01.001
  • Zhang, H., Fu, X., Jiang, H., Liu, X., & Lv, L. (2015). The relationships between asphalt ageing in lab and field based on the neural network. Road Materials and Pavement Design, 16(2), 493–504. doi: 10.1080/14680629.2015.1020846
  • Zhao, W., & Du, S. (2016). Learning multiscale and deep representations for classifying remotely sensed imagery. Isprs Journal of Photogrammetry and Remote Sensing, 113, 155–165. doi: 10.1016/j.isprsjprs.2016.01.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.