530
Views
19
CrossRef citations to date
0
Altmetric
Scientific papers

Optimising the effect of natural filler on asphalt-aggregate interfaces based on surface free energy measurements

, , &
Pages 1548-1570 | Received 02 Aug 2017, Accepted 05 Apr 2018, Published online: 21 Apr 2018

References

  • Aguiar-Moya, J. P., Salazar-Delgado, J., Baldi-Sevilla, A., Leiva-Villacorta, F., & Loria-Salazar, L. G. (2015). Effect of aging on adhesion properties of asphalt mixtures with the use of bitumen bond strength and surface energy measurement tests. Transportation Research Record: Journal of the Transportation Research Board, 2505, 57–65. doi: 10.3141/2505-08
  • Aljassar, A. H., Metwali, S., & Ali, M. A. (2004). Effect of filler types on Marshall stability and retained strength of asphalt concrete. The International Journal of Pavement Engineering, 5, 47–51. doi: 10.1080/10298430410001733491
  • Alvarez, A. E., & Caballero, M. M. (2014). Efecto del Llenante Mineral sobre la Calidad de las Interfases Asfalto-Agregado de Mezclas Asfálticas. Proceedings of the 9 Jornadas Internacionales del Asfalto, Medellin (pp. 1–10).
  • Alvarez, A. E., Ovalles, E., & Caro, S. (2012). Assessment of the effect of mineral filler on asphalt-aggregate interfaces based on thermodynamic properties. Construction and Building Materials, 28, 599–606. doi: 10.1016/j.conbuildmat.2011.08.089
  • American Association of State Highway and Transportation Officials. (2013). AASHTO designation M 323-13: standard specification for superpave volumetric mix design. Standard specifications for transportation materials and methods of sampling and testing, Washington, DC (pp. 1–12).
  • Anderson, D. A. (1996). Influence of fines on performance of asphalt concrete mixtures. Proceedings of the fourth annual aggregates symposium, Atlanta, GA.
  • Anderson, D. A., & Goetz, W. H. (1973). Mechanical behavior and reinforcement of mineral filler-asphalt mixtures. Proceedings of association of asphalt pavement technologists (Vol. 42).
  • Arabani, M., & Hamedi, G. H. (2011). Using the surface free energy method to evaluate the effects of polymeric aggregate treatment on moisture damage in hot-mix asphalt. Journal of Materials in Civil Engineering, 23, 802–811. doi: 10.1061/(ASCE)MT.1943-5533.0000228
  • Arenas, H. L. (2009). « Propuesta Técnica para Garantizar la Homogeneidad de los Asfaltos Producidos en las Refinerías Colombianas », Cámara Colombiana de Infraestructura.
  • Asphalt Institute. (2007). The asphalt handbook, MS-4. Lexington, KY: Author.
  • B&G U.T. (2006). « Cartografía Geológica en los Cinturones Plegados Sinú-San Jacinto. Agencia Nacional de Hidrocarburos.
  • Baldi-Sevilla, A., Montero, M. L., Aguiar-Moya, J. P., Loria-Salazar, L. G., & Bhasin, A. (2017). Influence of bitumen and aggregate polarity on interfacial adhesion. Road Materials and Pavement Design, 18, 304–317. doi: 10.1080/14680629.2017.1304265
  • Bhasin, A. (2006). Development of methods to quantify bitumen-aggregate adhesion and loss of adhesion Due to water (Ph.D. Dissertation). Texas A&M University, College Station, TX.
  • Bhasin, A., Howson, J., Masad, E., Little, D. N., & Lytton, R. L. (2007). Effect of modification processes on bond energy of asphalt binders. Transportation research board 86th annual meeting, Washington, DC, (pp. 1–14).
  • Bhasin, A., & Little, D. N. (2007). Characterization of aggregate surface energy using the universal sorption device. Journal of Materials in Civil Engineering, 19, 634–641. doi: 10.1061/(ASCE)0899-1561(2007)19:8(634)
  • Bhasin, A., Little, D. N., Vasconcelos, K. L., & Masad, E. (2007a). Surface free energy to identify moisture sensitivity of materials for asphalt mixes. Transportation Research Record, 2001, 37–45. doi: 10.3141/2001-05
  • Bhasin, A., Little, D. N., Vasconcelos, K. L., & Masad, E. (2007b). Use of surface free energy to identify moisture sensitivity of materials for asphalt mixes. Transportation research board 86th annual meeting, Washington, DC (pp. 1–15).
  • Bhasin, A., Masad, E., Little, D., & Lytton, R. (2006). Limits on adhesive bond energy for improved resistance of hot mix asphalt to moisture damage. Transportation Research Record, 1970, 3–13. doi: 10.3141/1970-03
  • Buttlar, W., Bozkurt, D., Al-Khateeb, G., & Waldhoff, A. (1999). Understanding asphalt mastic behavior through micromechanics. Transportation Research Record, 1681, 157–169. doi: 10.3141/1681-19
  • Cardone, F., Frigio, F., Ferrotti, G., & Canestrari, F. (2015). Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics. Journal of Traffic and Transportation Engineering, 2, 373–381.
  • Caro, S., & Alvarez, A. E. (2011). Evaluación de la Susceptibilidad al Daño por Humedad de Mezclas Asfálticas Empleando Propiedades Termodinámicas. Revista Facultad de Ingeniería, Universidad de Antioquia, 58, 95–104.
  • Cong, L., Peng, J., Guo, Z., & Wang, Q. (2017). Evaluation of fatigue cracking in asphalt mixtures based on surface energy. Journal of Materials in Civil Engineering, 29, 1–6. doi: 10.1061/(ASCE)MT.1943-5533.0001465
  • Cong, L., Wang, Q., & Cao, L. (2014). Rutting resistance ability related to asphalt-aggregate bonding based on surface energy analysis. Geotechnical Special Publication GSP - ASCE, Pavement Materials, Structures, and Performance, 239, 189–199. doi: 10.1061/9780784413418.020
  • Cong, Z., & Zheng, C. (2005). The effect of filler asphalt ratio on the performance of hot-mix asphalt. Proceedings of the 24th Southern African Transport Conference (SATC 2005), Pretoria, South Africa (pp. 973–978).
  • Cooley Jr., L. A., Brumfield, J. W., Mallick, R. B., Mogawer, W. S., Partl, M., Poulikakos, L. D., & Hicks, G. (2009). « Construction and Maintenance Practices for Permeable Friction Courses. NCHRP Report 640.
  • Faheem, A. F., & Bahia, H. U. (2009). Conceptual phenomenological model for interaction of asphalt binders with mineral fillers. Journal of the Association of Asphalt Paving Technologists, 78, 679–719.
  • Faheem, A. F., & Bahia, H. U. (2010). Modelling of asphalt mastic in terms of filler-bitumen interaction. Road Materials and Pavement Design, EATA 2010, 11, 281–303. doi: 10.1080/14680629.2010.9690335
  • Faheem, A., Hintz, C., Bahia, H., & Al-Qadi, I. (2012). Influence of filler fractional voids on mastic and mixture performance. Transportation Research Record, 2294, 74–80. doi: 10.3141/2294-08
  • Geotecnología Ltda. (2005). « Documento de Diagnóstico de las Amenazas de Inundacion y Erosion en el Río de Oro. Corporación de Defensa de la Meseta de Bucaramanga.
  • Guo, M., Bhasin, A., & Tan, Y. (2017). Effect of mineral fillers adsorption on rheological and chemical properties of asphalt binder. Construction and Building Materials, 141, 152–159. doi: 10.1016/j.conbuildmat.2017.02.051
  • Guo, M., Tan, Y., Hou, Y., Wang, L., & Wang, Y. (2017). Improvement of evaluation indicator of interfacial interaction between asphalt binder and mineral fillers. Construction and Building Materials, 151, 236–245. doi: 10.1016/j.conbuildmat.2017.05.003
  • Harrigan, E. T. (2001). « Research Results Digest 357, National Cooperative Highway Research Program. Transportation Research Board.
  • Hefer, A. W., Bhasin, A., & Little, D. N. (2006). Bitumen surface energy characterization using a contact angle approach. Journal of Materials in Civil Engineering, 18, 759–767. doi: 10.1061/(ASCE)0899-1561(2006)18:6(759)
  • Hernandez-Saenz, M. A., Caro, S., Arámbula-Mercado, E., & Epps Martin, A. (2016). Mix design, performance, and maintenance of permeable friction courses (PFC) in the United States: State of the Art. Construction and Building Materials, 111, 358–367. doi: 10.1016/j.conbuildmat.2016.02.053
  • Hesami, E., Jelagin, D., Kringos, N., & Birgisson, B. (2012). An empirical framework for determining asphalt mastic viscosity as a function of mineral filler concentration. Construction and Building Materials, 35, 23–29. doi: 10.1016/j.conbuildmat.2012.02.093
  • Howson, J., Masad, E., Little, D., & Kassem, E. (2012). Relationship between bond energy and total work of fracture for asphalt binder-aggregate systems. Road Materials and Pavement Design, 13, 281–303. doi: 10.1080/14680629.2012.657094
  • Huang, B., Shu, X., & Chen, X. (2007). Effects of mineral fillers on hot-mix asphalt laboratory-measured properties. International Journal of Pavement Engineering, 8, 1–9. doi: 10.1080/10298430600819170
  • Huang, S. C., & Zeng, M. (2007). Characterization of aging effect on rheological properties of asphalt-filler systems. International Journal of Pavement Engineering, 8, 213–223. doi: 10.1080/10298430601135477
  • Instituto Argentino de Normalización y Certificación-IRAM. (1983). Material de Relleno (“Filler”) para Mezclas Asfálticas. Método de Determinación de la Relación Crítica (Concentración Crítica) y de la Densidad. IRAM 1542/83 Standard, IRAM, Argentina.
  • INVIAS. (2013). Especificaciones Generales de Construcción de Carreteras y Normas de Ensayo Para Carreteras. Bogotá, DC: Author.
  • Kandhal, P., Lynn, C. Y., & Parker, F. (1998). « Characterization Tests for Mineral Fillers Related to Performance of Asphalt Paving Mixtures », NCAT Report 98-02, National Center for Asphalt Technology (NCAT)-Auburn University.
  • Kim, R. Y. (2009). Modeling of asphalt concrete. New York: McGraw-Hill.
  • Lesueur, D., Lázaro-Blázquez, M., Andaluz-Garcia, D., & Ruiz-Rubio, A. (2017). On the impact of the filler on the complex modulus of asphalt mixtures. Road Materials and Pavement Design, 515, 1–15. Vol. Published online: 10 Feb 2017. doi: 10.1080/14680629.2017.1288653
  • Liao, M., Chen, J., & Tsou, K. (2012). Fatigue characteristics of bitumen-filler mastics and asphalt mixtures. Journal of Materials in Civil Engineering, 24, 916–923. doi: 10.1061/(ASCE)MT.1943-5533.0000450
  • Liao, M. C., Airey, G., & Chen, J. S. (2013). Mechanical properties of filler-asphalt mastics. International Journal of Pavement Research and Technology, 6, 576–581.
  • Little D., Bhasin A. (2006). « Using surface energy measurements to select materials for asphalt pavement », Contractor’s Final Report for NCHRP Project 9-37; Web-Only Document 104. National Cooperative Highway Research Program.
  • Little, D., Lytton, R., Williams, D., & Kim, R. Y. (1999). An analysis of the mechanism of microdamage healing based on the application of micromechanics first principles of fracture and healing. Journal of the Association of Asphalt Paving Technologists, 68, 501–532.
  • Miller, C., Little, D. N., Bhasin, A., Gardner, N., & Herbert, B. (2012). Surface energy characteristics and impact of natural minerals on aggregate–bitumen bond strengths and asphalt mixture durability. Transportation Research Record, 2267, 45–55. doi: 10.3141/2267-05
  • Montepara, A., Romeo, E., Isola, M., & Tebaldi, G. (2011). The role of fillers on cracking behavior of mastics and asphalt mixtures. The Journal of the Association of Asphalt Paving Technologists (AAPT), 80, 161–192.
  • Pérez, F. E., & Calzada, M. A. (1990). Analysis and evaluation of the performance of porous asphalt: The Spanish experience. First international symposium on surface characteristics, State College, PA, (pp. 512–527).
  • Prowell B. D., Zhang J., & Brown E. R. (2005). « Aggregate properties and the performance of superpave-designed hot mix asphalt, NCHRP Report 539 », National Cooperative Highway Research Program-Transportation Research Board.
  • Reyes-Ortiz, O. J., Camacho-Tauta, J. F., & Londoño-León, A. (2013). Mechanic characteristics of asphalt mixtures as a function of the origin and gradation of quarried aggregate. Revista Científica “General José María Córdova, 11, 215–232. doi: 10.21830/19006586.194
  • Romero, N. (2012). « Análisis Petrográfico de Agregados, Norma ASTM C-295 ». Bogota, DC: Micromatco Ltda.
  • Ruiz, A. R., Alberola, R., Pérez, F. E., & Sanchez, B. (1990). Porous asphalt mixtures in Spain. Transportation Research Record, 1265, 87–94.
  • Shashidhar, N., & Shenoy, A. (2002). On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics. Mechanics of Materials, 34, 657–669. doi: 10.1016/S0167-6636(02)00166-7
  • Tan, Y., & Guo, M. (2013). Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Construction and Building Materials, 47, 254–260. doi: 10.1016/j.conbuildmat.2013.05.067
  • Tan, Y., & Guo, M. (2014). Micro- and nano-characteration of interaction between asphalt and filler. Journal of Testing and Evaluation, 42, 1–9. doi: 10.1520/JTE20130253
  • Texas Department of Transportation. (2014). Standard specifications for construction and maintenance of highways, streets, and bridges. Austin, TX: Author.
  • Underwood, B. S., & Kim, Y. R. (2014). A four phase micro-mechanical model for asphalt mastic modulus. Mechanics of Materials, 75, 13–33. doi: 10.1016/j.mechmat.2014.04.001
  • Van Oss, C. J., Chaudhury, M. K., & Good, R. J. (1988). Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chemical Reviews, 88, 927–941. doi: 10.1021/cr00088a006
  • Veytskin, Y., Bobko, C., Castorena, C., & Kim, Y. R. (2015). Nanoindentation investigation of asphalt binder and mastic cohesion. Construction and Building Materials, 100, 163–171. doi: 10.1016/j.conbuildmat.2015.09.053
  • Wasiuddin, N. M., Zaman, M. M., & O’Rear, E. A. (2008). Effect of Sasobit and Aspha-min on wettability and adhesion between asphalt binders and aggregates. Transportation Research Record, 2051, 80–89. doi: 10.3141/2051-10
  • Yin, H. M., Buttlar, W. G., Paulino, G. H., & Benedetto, H. D. (2008). Assessment of existing micro-mechanical models for asphalt mastics considering viscoelastic effects. Road Materials and Pavement Design, 9, 31–57. doi: 10.1080/14680629.2008.9690106
  • Zhang, D., & Luo, R. (2017). Modeling of adsorption isotherms of probe vapors on aggregates for accurate determination of aggregate surface energy components. Construction and Building Materials, 134, 374–387. doi: 10.1016/j.conbuildmat.2016.12.062

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.