398
Views
9
CrossRef citations to date
0
Altmetric
Scientific Papers

Alkali activation of lime kiln dust and fly ash blends for the stabilisation of demolition wastes

ORCID Icon, ORCID Icon, &
Pages 1514-1528 | Received 12 Apr 2018, Accepted 22 Nov 2018, Published online: 27 Dec 2018

References

  • AASHTO. (2007). “Standard method of test for determining the resilient modulus of soils and aggregate materials.” AASHTO T 307-99, AASHTO, American Association of State and Highway Transportation Officials.
  • Arulrajah, A., Mohammadinia, A., D'Amico, A., & Horpibulsuk, S. (2017). Effect of lime kiln dust as an alternative binder in the stabilization of construction and demolition materials. Construction and Building Materials, 152, 999–1007. doi: https://doi.org/10.1016/j.conbuildmat.2017.07.070
  • AS 1141.5.1. (2000). Particle density and water absorption of fine aggregate. Australian Standard 1141.5.1. Sydney: Australian Standard.
  • AS 1141.6.1. (2000). Particle density and water absorption of coarse aggregate – weighing-in-water method. Australian Standard 1141.6.1. Sydney: Australian Standard.
  • AS 1289.4.3.1. (1997). Soil chemical tests – determination of the pH value of a soil – electrometric method. Australian standard AS 1289.4.3.1, Sydney, Australia: Australian standard.
  • AS 1289.5.2.1. (2003). Soil compaction and density tests – determination of the dry density/moisture content relation of a soil using modified compactive effort. Australian Standard AS 1289.5.2.1, Sydney, Australia: Australian Standard.
  • ASTM. (2009). Standard test method for unconfined compressive strength of compacted soil-lime mixtures. ASTM Standard D5102. West Conshohocken, PA: ASTM International.
  • ASTM C131. (2006). Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles Machine (ASTM C131 ed.). West Conshohocken, PA: ASTM International.
  • ASTM D2487. (2011). Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM standard D2487 - 11, West Conshohocken, PA: ASTM International.
  • Australian Environment Department. (2014). Australian national greenhouse accounts.
  • Austroads. (2004). Guide to the structural design of road pavements. Sydney: Austroads.
  • Bernal, S. A., de Gutierrez, R. M., Provis, J. L., & Rose, V. (2010). Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research, 40(6), 898–907. doi: https://doi.org/10.1016/j.cemconres.2010.02.003
  • Bessa, I. S., Aranha, A. L., Vasconcelos, K. L., Silva, A. H. M., & Bernucci, L. L. B. (2016). Laboratory and field evaluation of recycled unbound layers with cement for use in asphalt pavement rehabilitation. Materials and Structures/Materiaux et Constructions, 49(7), 2669–2680.
  • BS 812-105.1. (2000). Method for determination of particle shape; Flakiness Index. British Standard 812-105.1. London: British Standard Institution.
  • Charette, A. (2006). Hydrated lime kiln dust recirculation method for gas scrubbing. Google Patents.
  • Chesner, W. H., Collins, R. J., & MacKay, M. (1998). User guidelines for waste and by-product materials in pavement construction.
  • Consoli, N. C., Foppa, D., Festugato, L., & Heineck, K. S. (2007). Key parameters for strength control of artificially cemented soils. Journal of Geotechnical and Geoenvironmental Engineering, 133(2), 197–205. doi: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197)
  • Consoli, N. C., Lopes Jr, L. d. S., Prietto, P. D. M., Festugato, L., & Cruz, R. C. (2011). Variables controlling stiffness and strength of lime-stabilized soils. Journal of Geotechnical and Geoenvironmental Engineering, 137(6), 628–632. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000470
  • Haichert, R., Kelln, R., Wandzura, C., Berthelot, C., & Guenther, D. (2012). Cement stabilization of conventional granular base and recycled crushed Portland cement concrete. Transportation Research Record: Journal of the Transportation Research Board, 2310, 121–126. doi: https://doi.org/10.3141/2310-13
  • Isola, M., Betti, G., Marradi, A., & Tebaldi, G. (2013). Evaluation of cement treated mixtures with high percentage of reclaimed asphalt pavement. Construction and Building Materials, 48, 238–247. doi: https://doi.org/10.1016/j.conbuildmat.2013.06.042
  • Latif, M. A., Naganathan, S., Razak, H. A., & Mustapha, K. N. (2015). Performance of lime kiln dust as cementitious material. Procedia Engineering, 125, 780–787. doi: https://doi.org/10.1016/j.proeng.2015.11.135
  • Miller, M. M., & Callaghan, R. M. (2004). Lime kiln dust as a potential raw material in Portland cement manufacturing. Reston, Virginia, United States: Citeseer.
  • Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Bo, M. W., & Darmawan, S. (2015). Laboratory evaluation of the use of cement-treated construction and demolition materials in pavement base and subbase applications. Journal of Materials in Civil Engineering, 27(6), 04014186. doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001148
  • Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Win Bo, M. W., & Darmawan, S. (2016a). Strength development and microfabric structure of construction and demolition aggregates stabilized with fly ash–based geopolymers. Journal of Materials in Civil Engineering, 28(11), 04016141. doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001652
  • Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Win Bo, M. W., & Darmawan, S. (2016b). Stabilization of demolition materials for pavement base/subbase applications using fly ash and slag geopolymers: Laboratory investigation. Journal of Materials in Civil Engineering, 04016033. doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001526
  • Silva, R., De Brito, J., & Dhir, R. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 201–217. doi: https://doi.org/10.1016/j.conbuildmat.2014.04.117
  • Standards Australia AS 1289.3.6.1. (2009). Methods of testing soils for engineering purposes – soil classification tests – determination of the particle size distribution of a soil – Standard method of analysis by sieving. Sydney: Australian Standard.
  • Texas Department of Transportation. (2013). (TxDOT) test procedure for soil-cement testing. Tex-120-E, Austin, TX.
  • VicRoads. (2011). Section 812 – crushed rock for pavement base and subbase. Contract Documents, VicRoads.
  • Victoria, W. (2006). Recycling construction and demolition material, guidance on complying with the occupational health and safety (asbestos) regulations 2003. Melbourne, VIC, Australia.
  • Vuong, B. T., & Brimble, R. (2000). Austroads repeated load triaxial test method: Determination of permanent deformation and resilient modulus characteristics of unbound granular materials under drained conditions, AG-PT/T053, Reprint of APRG 00/33 (MA), Melbourne, Australia: Austroads.
  • Zhang, Y. J., Zhao, Y. L., & Li, H. H. (2008). Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. Journal of Materials Science, 43(22), 7141–7147. doi: https://doi.org/10.1007/s10853-008-3028-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.