993
Views
24
CrossRef citations to date
0
Altmetric
Scientific Papers

Evaluation of the chemical composition and rheological properties of bio-asphalt from different biomass sources

, &
Pages 1829-1843 | Received 02 May 2018, Accepted 02 Jan 2019, Published online: 22 Jan 2019

References

  • Allena, R. G., Littlea, D. N., Bhasin, A., & Glover, C. J. (2014). The effects of chemical composition on asphalt microstructure and their association to pavement performance. International Journal of Pavement Engineering, 15(1), 9–22. doi: 10.1080/10298436.2013.836192
  • Bahia, H. U., Hanson, D. I., Zeng, M., Zhai, H., Khatri, M. A., & Anderson, R. M. (2001). Characterization of modified asphalt binders in Superpave mix design. Washington, DC: Transportion Research Board.
  • Bai, M. (2017). Investigation of low-temperature properties of recycling of aged SBS modified asphalt binder. Construction and Building Materials, 150, 766–773. doi: 10.1016/j.conbuildmat.2017.05.206
  • Dong, Z., Zhou, T., Wang, H., & Luan, H. (2018). Performance comparison between different Sourced Bioasphalts and asphalt mixtures. Journal of Materials in Civil Engineering, 5(30), 04018063. doi: 10.1061/(ASCE)MT.1943-5533.0002247
  • DuBois, E., Mehta, D. Y., & Nolan, A. (2014). Correlation between multiple stress creep recovery (MSCR) results and polymer modification of binder. Construction and Building Materials, 65, 184–190. doi: 10.1016/j.conbuildmat.2014.04.111
  • Fini, E. H., Al-Qadi, I. L., You, Z., Zada, B., & Mills-Beale, J. (2012). Partial replacement of asphalt binder with bio-binder: Characterisation and modification. International Journal of Pavement Engineering, 13(6), 515–522. doi: 10.1080/10298436.2011.596937
  • Fini, E. H., Kalberer, E. W., Shahbazi, A., Basti, M., You, Z., Ozer, H., & Aurangzeb, Q. (2011). Chemical Characterization of biobinder from swine manure: Sustainable modifier for asphalt binder. Journal of Materials in Civil Engineering, 23(11), 1506–1513. doi: 10.1061/(ASCE)MT.1943-5533.0000237
  • Gong, M. H., Yang, J., Zhang, J. Y., Zhu, H. R., & Tong, T. Z. (2016). Physical-chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Construction and Building Materials, 105, 35–45. doi: 10.1016/j.conbuildmat.2015.12.025
  • Kou, C., Kang, A., & Zhang, W. (2015). Methods to prepare polymer modified bitumen samples for morphological observation. Construction and Building Materials, 81, 93–100. doi: 10.1016/j.conbuildmat.2015.01.081
  • Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1–2), 42–82. doi: 10.1016/j.cis.2008.08.011
  • Liu, Y., Zhang, J., Jiang, Y., Li, C., Xi, Z., Cai, J., & Xie, H. (2018). Investigation of secondary phase separation and mechanical properties of epoxy SBS-modified asphalts. Construction and Building Materials, 165, 163–172. doi: 10.1016/j.conbuildmat.2018.01.032
  • Mohamed, A. R., & Williams, C. (2010). General rheological properties of fractionated switchgrass bio-oil as a pavement material. Road Materials and Pavement Design, 11(sup1), 325–353. doi: 10.1080/14680629.2010.9690337
  • Mouillet, V., Farcas, F., & Chailleux, E. (2011). Physico-chemical techniques for analysing the ageing of polymer modified bitumen. Cambridge: Woodhead Publishing Limited.
  • Nciri, N., Kim, N., & Cho, N. (2017). New insights into the effects of styrene-butadiene-styrene polymer modifier on the structure, properties, and performance of asphalt binder: The case of AP-5 asphalt and solvent deasphalting pitch. Materials Chemistry and Physics, 193, 477–495. doi: 10.1016/j.matchemphys.2017.03.014
  • Podolsky, J. H., Buss, A., Williams, R. C., & Cochran, E. W. (2016). The rutting and stripping resistance of warm and hot mix asphalt using bio-additives. Construction and Building Materials, 112, 128–139. doi: 10.1016/j.conbuildmat.2016.02.166
  • Polacco, G., Filippi, S., Merusi, F., & Stastna, G. (2015). A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Advances in Colloid and Interface Science, 224, 72–112. doi: 10.1016/j.cis.2015.07.010
  • Sun, D., Sun, G., Du, Y., Zhu, X., & Lu, T. (2017). Evaluation of optimized bio-asphalt containing high content waste cooking oil residues. Fuel, 202, 529–540. doi: 10.1016/j.fuel.2017.04.069
  • Sun, Z., Yi, J., Huang, Y., Feng, D., & Guo, C. (2016). Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Construction and Building Materials, 102, 496–504. doi: 10.1016/j.conbuildmat.2015.10.173
  • Sun, B., & Zhou, X. (2018). Diffusion and rheological properties of asphalt modified by bio-oil regenerant derived from waste wood. Journal of Materials in Civil Engineering, 30(2), 04017274. doi: 10.1061/(ASCE)MT.1943-5533.0002138
  • Tarsi, G., Varveri, A., Lantieri, C., Scarpas, A., & Sangiorgi, A. C. (2018). Effects of different aging methods on chemical and rheological properties of bitumen. Journal of Materials in Civil Engineering, 3(30), 04018009. doi: 10.1061/(ASCE)MT.1943-5533.0002206
  • Uzun, B. B., Apaydin-Varol, E., Ateş, F., Özbay, N., & Pütün, A. E. (2010). Synthetic fuel production from tea waste: Characterisation of bio-oil and bio-char. Fuel, 89(1), 176–184. doi: 10.1016/j.fuel.2009.08.040
  • Wang, P., Dong, Z., Tan, Y., & Liu, Z. (2015a). Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations. Energy & Fuels, 29(1), 112–121. doi: 10.1021/ef502172n
  • Wang, P., Dong, Z., Tan, Y., & Liu, Z. (2015b). Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations. Energy & Fuels, 29(1), 112–121. doi: 10.1021/ef502172n
  • Wang, P., Dong, Z., Tan, Y., & Liu, Z. (2017a). Anti-ageing properties of styrene – butadiene – styrene copolymer-modified asphalt combined with multi-walled carbon nanotubes. Road Materials and Pavement Design, 3(18), 533–549. doi: 10.1080/14680629.2016.1181561
  • Wang, P., Dong, Z., Tan, Y., & Liu, Z. (2017b). Effect of multi-walled carbon nanotubes on the performance of styrene–butadiene–styrene copolymer modified asphalt. Materials and Structures, 50(1), 1–17. doi: 10.1617/s11527-016-0885-6
  • Xu, H., Guo, W., & Tan, Y. (2015). Internal structure evolution of asphalt mixtures during freeze–thaw cycles. Materials & Design, 86, 436–446. doi: 10.1016/j.matdes.2015.07.073
  • Yang, X., You, Z., Dai, Q., & Mills-Beale, J. (2014). Mechanical performance of asphalt mixtures modified by bio-oils derived from waste wood resources. Construction and Building Materials, 51, 424–431. doi: 10.1016/j.conbuildmat.2013.11.017
  • Zhang, R., Wang, H., Gao, J., You, Z., & Yang, X. (2017). High temperature performance of SBS modified bio-asphalt. Construction and Building Materials, 144, 99–105. doi: 10.1016/j.conbuildmat.2017.03.103
  • Zhang, R., Wang, H., Jiang, X., You, Z., Yang, X., & Ye, M. (2018). Thermal storage stability of bio-oil modified asphalt. Journal of Materials in Civil Engineering, 4(30), 04018054. doi: 10.1061/(ASCE)MT.1943-5533.0002237
  • Zhang, R., Wang, H., You, Z., Jiang, X., & Yang, X. (2017). Optimization of bio-asphalt using bio-oil and distilled water. Journal of Cleaner Production, 165, 281–289. doi: 10.1016/j.jclepro.2017.07.154
  • Zofka, A., & Yut, I. (2012). Investigation of rheology and aging properties of asphalt binder modified with waste coffee grounds (pp. 61–72). Transportation Research E-Circular.
  • Zoorob, S. E., Castro-Gomes, J. P., Pereira Oliveira, L. A., & O’Connell, J. (2012). Investigating the multiple stress creep recovery bitumen characterisation test. Construction and Building Materials, 30, 734–745. doi: 10.1016/j.conbuildmat.2011.12.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.