307
Views
13
CrossRef citations to date
0
Altmetric
Scientific Notes

Laboratory evaluation of the performance of asphalt mixtures containing biomass fillers

&
Pages 2040-2053 | Received 29 May 2018, Accepted 03 Jan 2019, Published online: 02 Jun 2019

References

  • AASHTO T 283-14. (2013). Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. American Association of State Highway and Transportation Officials.
  • Airey, G., Collop, A., Zoorob, S., & Elliott, R. (2008). The influence of aggregate, filler and bitumen on asphalt mixture moisture damage. Construction and Building Materials. Retrieved from http://www.sciencedirect.com/science/article/pii/S0950061807001808
  • Al-Abdul-Wahhab, H., & Al-Amri, G. (1991). Laboratory evaluation of reclaimed rubber asphaltic concrete mixes. Journal of Materials in Civil Engineering, 3, 189–203. doi: 10.1061/(ASCE)0899-1561(1991)3:3(189)
  • Al-Hdabi, A. (2016). Laboratory investigation on the properties of asphalt concrete mixture with rice husk ash as filler. Construction and Building Materials. Retrieved from http://www.sciencedirect.com/science/article/pii/S0950061816315100
  • ASTM D5581-07a. (2013). Standard test method for resistance to plastic flow of bituminous mixtures using Marshall apparatus (6 inch-diameter specimen). West Conshohocken, PA: ASTM International.
  • ASTM D6927-15. (2015). Standard test method for Marshall stability and flow of asphalt mixtures. West Conshohocken, PA: ASTM International.
  • ASTM D7369-11. (2011). Standard test method for determining the resilient modulus of bituminous mixtures by indirect tension test. West Conshohocken, PA: ASTM International.
  • ASTM E1621-13. (2013). Standard guide for elemental analysis by wavelength dispersive X-ray fluorescence spectrometry. West Conshohocken, PA: ASTM International.
  • Baghaee Moghaddam, T., Soltani, M., & Karim, M. R. (2014). Evaluation of permanent deformation characteristics of unmodified and polyethylene terephthalate modified asphalt mixtures using dynamic creep test. Materials & Design, 53, 317–324. doi: 10.1016/j.matdes.2013.07.015
  • Behnood, A., Modiri Gharehveran, M., Gozali Asl, F., & Ameri, M. (2015). Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash. Construction and Building Materials, 96, 172–180. doi: 10.1016/j.conbuildmat.2015.08.021
  • Bennert, T., Reinke, G., Mogawer, W., & Mooney, K. (2011). Assessment of Workability and Compactability of Warm-Mix asphalt. Transportation Research Record: Journal of the Transportation Research Board, 2180, 36–47. doi: 10.3141/2180-05
  • Buttlar, W., Bozkurt, D., Al-Khateeb, G., & Waldhoff, A. (1999). Understanding asphalt mastic Behavior through Micromechanics. Transportation Research Record: Journal of the Transportation Research Board, 1681, 157–169. doi: 10.3141/1681-19
  • Chen, J.-S., Kuo, P.-H., Lin, P.-S., Huang, C.-C., & Lin, K.-Y. (2008). Experimental and theoretical characterization of the engineering behavior of bitumen mixed with mineral filler. Materials and Structures, 41, 1015–1024. doi: 10.1617/s11527-007-9302-5
  • Hanz, A. J., & Bahia, H. U. (2013). Asphalt binder Contribution to mixture workability and application of asphalt lubricity test to estimate compactability temperatures for warm-mix asphalt. Transportation Research Record: Journal of the Transportation Research Board, 2371, 87–95. doi: 10.3141/2371-10
  • Heinimö, J., & Junginger, M. (2009). Production and trading of biomass for energy – An overview of the global status. Biomass and Bioenergy, 33, 1310–1320. doi: 10.1016/j.biombioe.2009.05.017
  • Hesami, S., Ahmadi, S., & Nematzadeh, M. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building Materials, 53, 680–691. doi: 10.1016/j.conbuildmat.2013.11.070
  • Hesami, E., Bidewell, N., Birgisson, B., & Kringos, N. (2013). Evaluation of environmental susceptibility of bituminous mastic viscosity as a function of mineral and biomass fillers. Transportation Research Record: Journal of the Transportation Research Board, 2371, 23–31. doi: 10.3141/2371-03
  • Hesami, E., Ghafar, A. N., Birgisson, B., & Kringos, N. (2013). Multi-scale characterization of asphalt mastic rheology. In Multi-scale model. Charact. Infrastruct. Mater. (pp. 45–61). Dordrecht: Springer Netherlands. doi:10.1007/978-94-007-6878-9_4.
  • Hesami, E., Jelagin, D., Kringos, N., & Birgisson, B. (2012). An empirical framework for determining asphalt mastic viscosity as a function of mineral filler concentration. Construction and Building Materials, 35, 23–29. doi: 10.1016/j.conbuildmat.2012.02.093
  • Melotti, R., Santagata, E., Bassani, M., Salvo, M., & Rizzo, S. (2013). A preliminary investigation into the physical and chemical properties of biomass ashes used as aggregate fillers for bituminous mixtures. Waste Management. Retrieved from http://www.sciencedirect.com/science/article/pii/S0956053X13002456
  • Muniandy, R., Aburkaba, E., & Taha, R. (2013). Effect of mineral filler type and particle size on the engineering properties of stone mastic asphalt pavements. The Journal of Engineering Research. Retrieved from http://www.tjer.net/site/issue10-2/Paper_2.pdf
  • Sargın, Ş, Saltan, M., Morova, N., Serin, S., & Terzi, S. (2013). Evaluation of rice husk ash as filler in hot mix asphalt concrete. Construction and Building Materials, 48, 390–397. doi: 10.1016/j.conbuildmat.2013.06.029
  • Sayadi, M., & Hesami, S. (2016). Performance evaluation of using electric arc furnace dust in asphalt binder. Journal of Cleaner Production, doi: 10.1016/j.jclepro.2016.11.156
  • Tan, Y., & Guo, M. (2014). Interfacial thickness and interaction between asphalt and mineral fillers. Materials and Structures, 47, 605–614. doi: 10.1617/s11527-013-0083-8
  • Wang, H., Al-Qadi, I., Faheem, A., Bahia, H., Yang, S.-H., & Reinke, G. (2011). Effect of mineral filler characteristics on asphalt mastic and mixture rutting Potential. Transportation Research Record: Journal of the Transportation Research Board, 2208, 33–39. doi: 10.3141/2208-05
  • Xue, Y., Wu, S., Cai, J., Zhou, M., & Zha, J. (2014). Effects of two biomass ashes on asphalt binder: Dynamic shear rheological characteristic analysis. Construction and Building Materials, 56, 7–15. doi: 10.1016/j.conbuildmat.2014.01.075
  • Yasanthi, R. G. N., Rengarasu, T. M., & Bandara, W. M. K. R. T. W. (2016). Study on the performance of waste materials in hot mix asphalt concrete. The American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 23, 252–267.
  • Zeng, M., & Wu, C. (2008). Effects of type and content of mineral filler on viscosity of asphalt mastic and mixing and compaction temperatures of asphalt mixture. Transportation Research Record: Journal of the Transportation Research Board, 2051, 31–40. doi: 10.3141/2051-05
  • Zulkati, A., Diew, W. Y., & Delai, D. S. (2012). Effects of fillers on properties of asphalt-concrete mixture. Journal of Transportation Engineering, 138, 902–910. doi: 10.1061/(ASCE)TE.1943-5436.0000395

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.