423
Views
21
CrossRef citations to date
0
Altmetric
Scientific papers

Influence of the replacement of fine copper slag aggregate on physical properties and abrasion resistance of pervious concrete

, &
Pages 835-851 | Received 07 Apr 2019, Accepted 16 Jul 2019, Published online: 01 Aug 2019

References

  • ACI Committee 522. (2010). ACI 522r–10 report on pervious concrete. Farmington Hills, MI: American Concrete Institute.
  • Al-Jabri, K. S., Hisada, M., Al-Oraimi, S. K., & Al-Saidy, A. H. (2009). Copper slag as sand replacement for high performance concrete. Cement and Concrete Composites, 31(7), 483–488. doi: 10.1016/j.cemconcomp.2009.04.007
  • Al-Jabri, K. S., Hisada, M., Al-Saidy, A. H., & Al-Oraimi, S. K. (2009). Performance of high strength concrete made with copper slag as a fine aggregate. Construction and Building Materials, 23(6), 2132–2140. doi: 10.1016/j.conbuildmat.2008.12.013
  • Alp, İ, Deveci, H., & Süngün, H. (2008). Utilization of flotation wastes of copper slag as raw material in cement production. Journal of Hazardous Materials, 159(2), 390–395. doi: 10.1016/j.jhazmat.2008.02.056
  • Aoki, Y., Sri Ravindrarajah, R., & Khabbaz, H. (2012). Properties of pervious concrete containing fly ash. Road Materials and Pavement Design, 13(1), 1–11. doi: 10.1080/14680629.2011.651834
  • ASTM C127-15. (2015). Standard test method for relative density (specific gravity) and absorption of coarse aggregate. West Conshohocken, PA: ASTM International.
  • ASTM C1688 / C1688M-14a. (2014). Standard test method for density and void content of freshly mixed pervious concrete. West Conshohocken, PA: ASTM International.
  • ASTM C1747/C1747M-13. (2013). Standard test method for determining potential resistance to degradation of pervious concrete by impact and abrasion. West Conshohocken, PA: ASTM International.
  • ASTM C1754 / C1754M-12. (2012). Standard test method for density and void content of hardened pervious concrete. West Conshohocken, PA: ASTM International.
  • ASTM C192. (2018). Standard practice for making and curing concrete test specimens in the laboratory. West Conshohocken, PA: ASTM International.
  • ASTM C29/C29M-17a. (2017). Standard test method for bulk density (“unit weight”) and voids in aggregate. West Conshohocken, PA: ASTM International.
  • ASTM C33/C33M. (2018). Standard specification for concrete aggregates. West Conshohocken, PA: ASTM International.
  • ASTM C496 / C496M-17. (2017). Standard test method for splitting tensile strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International.
  • ASTM C535-16. (2016). Standard test method for resistance to degradation of large-size coarse aggregate by abrasion and impact in the Los Angeles machine. West Conshohocken, PA: ASTM International.
  • ASTM C78/C78M-18. (2018). Standard test method for flexural strength of concrete (using simple beam with third-point loading). West Conshohocken, PA: ASTM International.
  • Biswas, S., & Satapathy, A. (2010). Use of copper slag in glass-epoxy composites for improved wear resistance. Waste Management & Research, 28(7), 615–625. doi: 10.1177/0734242X09352260
  • BS 812-110. (1999). Testing aggregates. Method for determination of aggregate crushing value. London: British Standards Institution.
  • BS 812-112. (1999). Testing aggregates. Method for determination of aggregate impact value (AIV). London: British Standards Institution.
  • BS EN 12390-3. (2009). Testing hardened concrete. Compressive strength of test specimens. London: British Standards Institution.
  • BS EN 1338. (2003). Concrete paving blocks. Requirements and test methods. London: British Standards Institution.
  • Chandrappa, A. K., & Biligiri, K. P. (2016). Influence of mix parameters on pore properties and modulus of pervious concrete: An application of ultrasonic pulse velocity. Materials and Structures, 49(12), 5255–5271. doi: 10.1617/s11527-016-0858-9
  • Chandrappa, A. K., & Biligiri, K. P. (2018). Effect of pore structure on fatigue of pervious concrete. Road Materials and Pavement Design, 1–23. doi: 10.1080/14680629.2018.1464500
  • Chindaprasirt, P., Hatanaka, S., Chareerat, T., Mishima, N., & Yuasa, Y. (2008). Cement paste characteristics and porous concrete properties. Construction and Building Materials, 22(5), 894–901. doi: 10.1016/j.conbuildmat.2006.12.007
  • Das, B. M., Tarquin, A. J., & Jones, A. D. (1983). Geotechnical properties of a copper slag. Transportation Research Record, 941, 1–4.
  • Dhir, R. K., Brito, J. d., Mangabhai, R., & Lye, C. Q. (2017). 1 – Introduction. In Sustainable construction materials: Copper slag (pp. 1–8). Kidlington: Woodhead Publishing.
  • El-Hassan, H., & Kianmehr, P. (2018). Pervious concrete pavement incorporating GGBS to alleviate pavement runoff and improve urban sustainability. Road Materials and Pavement Design, 19(1), 167–181. doi: 10.1080/14680629.2016.1251957
  • Gaedicke, C., Marines, A., & Miankodila, F. (2014). Assessing the abrasion resistance of cores in virgin and recycled aggregate pervious concrete. Construction and Building Materials, 68, 701–708. doi: 10.1016/j.conbuildmat.2014.07.001
  • Gorai, B., Jana, R. K., & Premchand. (2003). Characteristics and utilisation of copper slag—a review. Resources, Conservation and Recycling, 39(4), 299–313. doi: 10.1016/S0921-3449(02)00171-4
  • Güneyisi, E., Gesoğlu, M., Kareem, Q., & İpek, S. (2016). Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete. Materials and Structures, 49(1), 521–536. doi: 10.1617/s11527-014-0517-y
  • Guo, Y. (2003). Investigations on the use of industrial wastes in cement production. Arid Environmental Monitoring, 17(3), 177–179.
  • Holman, K. R., Volz, J., & Myers, J. (2013). Comparative study on the mechanical and durability behavior of high-volume fly ash concrete versus conventional concrete. First international conference on concrete sustainability (ICCS 2013).
  • Ibrahim, H. A., & Abdul Razak, H. (2016). Effect of palm oil clinker incorporation on properties of pervious concrete. Construction and Building Materials, 115, 70–77. doi: 10.1016/j.conbuildmat.2016.03.181
  • Ibrahim, H. A., Abdul Razak, H., & Abutaha, F. (2017). Strength and abrasion resistance of palm oil clinker pervious concrete under different curing method. Construction and Building Materials, 147, 576–587. doi: 10.1016/j.conbuildmat.2017.04.072
  • Khankhaje, E., Rafieizonooz, M., Salim, M. R., Khan, R., Mirza, J., Siong, H. C., & Salmiati. (2018). Sustainable clean pervious concrete pavement production incorporating palm oil fuel ash as cement replacement. Journal of Cleaner Production, 172, 1476–1485. doi: 10.1016/j.jclepro.2017.10.159
  • Khanzadi, M., & Behnood, A. (2009). Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate. Construction and Building Materials, 23(6), 2183–2188. doi: 10.1016/j.conbuildmat.2008.12.005
  • Kıyak, B., Özer, A., Altundoǧan, H. S., Erdem, M., & Tümen, F. (1999). Cr(VI) reduction in aqueous solutions by using copper smelter slag. Waste Management, 19(5), 333–338. doi: 10.1016/S0956-053X(99)00141-5
  • Mavroulidou, M. (2017). Mechanical properties and durability of concrete with water cooled copper slag aggregate. Waste and Biomass Valorization, 8(5), 1841–1854. doi: 10.1007/s12649-016-9819-3
  • Mirhosseini, S. R., Fadaee, M., Tabatabaei, R., & Fadaee, M. J. (2017). Mechanical properties of concrete with Sarcheshmeh mineral complex copper slag as a part of cementitious materials. Construction and Building Materials, 134, 44–49. doi: 10.1016/j.conbuildmat.2016.12.024
  • Mithun, B. M., & Narasimhan, M. C. (2016). Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. Journal of Cleaner Production, 112, 837–844. doi: 10.1016/j.jclepro.2015.06.026
  • Moura, W., Masuero, A., Dal Molin, D., & Vilela, A. (1999). Concrete performance with admixtures of electrical steel slag and copper copper concerning mechanical properties. Special Publication, 186, 81–100.
  • Netinger Grubeša, I., Barišić, I., Keser, T., & Vračević, M. (2019). Wearing characteristics assessment of pervious concrete pavements. Road Materials and Pavement Design, 20(3), 727–739. doi: 10.1080/14680629.2017.1421568
  • Öz, HÖ. (2018). Properties of pervious concretes partially incorporating acidic pumice as coarse aggregate. Construction and Building Materials, 166, 601–609. doi: 10.1016/j.conbuildmat.2018.02.010
  • Pazhani, K. (2010). Study on the mechanical properties of copper slag concrete. Engineering Today, 12, 33–44.
  • Sata, V., Wongsa, A., & Chindaprasirt, P. (2013). Properties of pervious geopolymer concrete using recycled aggregates. Construction and Building Materials, 42, 33–39. doi: 10.1016/j.conbuildmat.2012.12.046
  • Shanmuganathan, P., Lakshmipathiraj, P., Srikanth, S., Nachiappan, A. L., & Sumathy, A. (2008). Toxicity characterization and long-term stability studies on copper slag from the ISASMELT process. Resources, Conservation and Recycling, 52(4), 601–611. doi: 10.1016/j.resconrec.2007.08.001
  • Sharma, R., & Khan, R. A. (2017a). Durability assessment of self compacting concrete incorporating copper slag as fine aggregates. Construction and Building Materials, 155, 617–629. doi: 10.1016/j.conbuildmat.2017.08.074
  • Sharma, R., & Khan, R. A. (2017b). Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. Journal of Cleaner Production, 151, 179–192. doi: 10.1016/j.jclepro.2017.03.031
  • Sharma, R., & Khan, R. A. (2018). Influence of copper slag and metakaolin on the durability of self compacting concrete. Journal of Cleaner Production, 171, 1171–1186. doi: 10.1016/j.jclepro.2017.10.029
  • Shi, C., Meyer, C., & Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 52(10), 1115–1120. doi: 10.1016/j.resconrec.2008.06.008
  • Shirgir, B., Hasany, A., & Goodarzi, H. (2011). The influence of aggregate gradation on the permeability and mechanical properties of porous concrete. Modares Civil Engineering Journal, 11(1), 49–120. article in Persian.
  • Shirgir, B., Hassani, A., & Khodadadi, A. (2011). Experimental study on permeability and mechanical properties of nanomodified porous concrete. Transportation Research Record, 2240(1), 30–35. doi: 10.3141/2240-05
  • Tennis, P. D., Leming, M. L., Akers, D. J., & Association, N. R. M. C. (2004). Pervious concrete pavements. Illinois: Portland Cement Association.
  • Wu, W., Zhang, W., & Ma, G. (2010). Optimum content of copper slag as a fine aggregate in high strength concrete. Materials & Design, 31(6), 2878–2883. doi: 10.1016/j.matdes.2009.12.037
  • Yap, S. P., Chen, P. Z. C., Goh, Y., Ibrahim, H. A., Mo, K. H., & Yuen, C. W. (2018). Characterization of pervious concrete with blended natural aggregate and recycled concrete aggregates. Journal of Cleaner Production, 181, 155–165. doi: 10.1016/j.jclepro.2018.01.205
  • Zaetang, Y., Sata, V., Wongsa, A., & Chindaprasirt, P. (2016). Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate. Construction and Building Materials, 111, 15–21. doi: 10.1016/j.conbuildmat.2016.02.060
  • Zhang, Z., Zhang, Y., Yan, C., & Liu, Y. (2017). Influence of crushing index on properties of recycled aggregates pervious concrete. Construction and Building Materials, 135, 112–118. doi: 10.1016/j.conbuildmat.2016.12.203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.