550
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Viscoelastic analysis of surface responses in flexible pavements under different loading conditions

, ORCID Icon, &
Pages 2227-2249 | Received 26 Nov 2020, Accepted 28 Jul 2021, Published online: 13 Aug 2021

References

  • Al-Qadi, I. L., & Wang, H. (2009). Full-depth pavement responses under various tire configurations: Accelerated pavement testing and finite element modeling. Journal of the Association of Asphalt Paving Technologists, 78, 721–760.
  • Al-Qadi, I. L., Wang, H., Yoo, P. J., & Dessouky, S. H. (2008). Dynamic analysis and in situ validation of perpetual pavement response to vehicular loading. Transportation Research Record, 2087(1), 29–39. https://doi.org/10.3141/2087-04
  • Alae, M., Haghshenas, H. F., & Zhao, Y. (2019). Evaluation of top-down crack propagation in asphalt pavement under dual tire loading. Canadian Journal of Civil Engineering, 46(8), 704–711. https://doi.org/10.1139/cjce-2018-0432
  • Alae, M., Zhao, Y., Zarei, S., Fu, G., & Cao, D. (2020). Effects of layer interface conditions on top-down fatigue cracking of asphalt pavements. International Journal of Pavement Engineering, 21(3), 280–288. https://doi.org/10.1080/10298436.2018.1461870
  • Applied Research Associates. (2004). Guide for mechanistic-empirical design of new and rehabilitated pavement structures. Final Report, National Cooperative Highway Research Program (NCHRP) Project 1-37A National Research Council.
  • Archilla, A. R. (2015). Top-down fatigue cracking in high-temperature environments. Transportation Research Record: Journal of the Transportation Research Board, 2507(1), 128–137. https://doi.org/10.3141/2507-14
  • Asphalt Research Consortium. (2013). Report J: Pavement response model to dynamic loads 3D move. Quarterly Technical Progress Report, Asphalt Research Consortium, USA.
  • Assogba, O. C., Tan, Y., Sun, Z., Lushinga, N., & Bin, Z. (2019). Effect of vehicle speed and overload on dynamic response of semi-rigid base asphalt pavement. Road Materials and Pavement Design, 22(3), 572–602. https://doi.org/10.1080/14680629.2019.1614970
  • Burmister, D. M. (1944, November 27–30). The theory of stress and displacements in layered systems and applications to the design of airport runways. Highway Research Board Proceedings of 23rd Annual Meeting, Chicago, IL, USA, Vol. 23, pp. 126–144.
  • Burmister, D. M. (1945). The general theory of stresses and displacements in layered soil systems. II. Journal of Applied Physics, 16(3), 126–127. https://doi.org/10.1063/1.1707562
  • Chabot, A., Chupin, O., Deloffre, L., & Duhamel, D. (2010). Viscoroute 2.0 A: Tool for the simulation of moving load effects on asphalt pavement. Road Materials and Pavement Design, 11(2), 227–250. http://doi.org/10.1080/14680629.2010.9690274
  • Chen, E. Y., Pan, E., & Green, R. (2009). Surface loading of a multilayered viscoelastic pavement: Semi-analytical solution. Journal of Engineering Mechanics, 135(6), 517–528. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:6(517)
  • Dai, S. T., Van Deusen, D., Beer, M., Rettner, D., & Cochran, G. (1997). Investigation of flexible pavement response to truck speed and FWD load through instrumented pavements. 8th International Conference on Asphalt Pavements Federal Highway Administration, Seattle, Washington, DC, USA.
  • De Freitas, E. F., Pereira, P., Picado–Santos, L., & Papagiannakis, A. T. (2005). Effect of construction quality, temperature, and rutting on initiation of top-down cracking. Transportation Research Record, 1929(1), 174–182. https://doi.org/10.1177/0361198105192900121
  • Dinegdae, Y. H., & Birgisson, B. (2018). Effects of truck traffic on top-down fatigue cracking performance of flexible pavements using a new mechanics-based analysis framework. Road Materials and Pavement Design, 19(1), 182–200. https://doi.org/10.1080/14680629.2016.1251958
  • Dinegdae, Y. H., Onifade, I., Jelagin, D., & Birgisson, B. (2015). Mechanics-based top-down fatigue cracking initiation prediction framework for asphalt pavements. Road Materials and Pavement Design, 16(4), 907–927. https://doi.org/10.1080/14680629.2015.1055335
  • Dubois, F., Moutou-Pitti, R., Picoux, B., & Petit, C. (2012). Finite element model for crack growth process in concrete bituminous. Advances in Engineering Software, 44(1), 35–43. https://doi.org/10.1016/j.advengsoft.2011.05.039
  • Elseifi, M. A., Al-Qadi, I. L., & Yoo, P. J. (2006). Viscoelastic modeling and field validation of flexible pavements. Journal of Engineering Mechanics, 132(2), 172–178. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(172)
  • Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed.). John Willey & Sons.
  • Gaver, D. P. (1966). Observing stochastic processes, and approximate transform inversion. Operations Research, 14(3), 444–459. https://doi.org/10.1287/opre.14.3.444
  • Grellet, D., Doré, G., Chupin, O., & Piau, J. M. (2018). Highlighting of the viscoelastic behaviour of interfaces in asphalt pavements–a possible origin to top-down cracking. Road Materials and Pavement Design, 19(3), 581–590. https://doi.org/10.1080/14680629.2018.1418721
  • Groenendijk, J. (2000). Accelerated testing and surface cracking of asphaltic concrete pavements [Ph.D. dissertation]. Delft University of Technology.
  • Gu, F., Luo, X., West, R. C., Taylor, A. J., & Moore, N. D. (2018). Energy-based crack initiation model for load-related top-down cracking in asphalt pavement. Construction and Building Materials, 159, 587–597. https://doi.org/10.1016/j.conbuildmat.2017.11.008
  • Guo, S., Fan, X., Gao, K., & Li, H. (2020). Precision controllable Gaver–Wynn–Rho algorithm in Laplace transform triple reciprocity boundary element method for three-dimensional transient heat conduction problems. Engineering Analysis with Boundary Elements, 114, 166–177. https://doi.org/10.1016/j.enganabound.2020.03.002
  • Haddad, Y. M. (1995). Viscoelasticity of engineering materials. Chapman & Hall.
  • Huang, Y. (2003). Pavement analysis and design. Prentice Hall.
  • Khazanovich, L., & Wang, Q. (2007). Mnlayer: High-performance layered elastic analysis program. Transportation Research Record, 2037(1), 63–75. https://doi.org/10.3141/2037-06
  • Ling, M., Luo, X., Chen, Y., Gu, F., & Lytton, R. L. (2020). Mechanistic-empirical models for top-down cracking initiation of asphalt pavements. International Journal of Pavement Engineering, 21(4), 464–473. https://doi.org/10.1080/10298436.2018.1489134
  • Ling, M., Luo, X., Chen, Y., Hu, S., & Lytton, R. L. (2019). A calibrated mechanics-based model for top-down cracking of asphalt pavements. Construction and Building Materials, 208, 102–112. https://doi.org/10.1016/j.conbuildmat.2019.02.090
  • Lucas, S. K., & Stone, H. A. (1995). Evaluating infinite integrals involving Bessel functions of arbitrary order. Journal of Computational and Applied Mathematics, 64(3), 217–231. https://doi.org/10.1016/0377-0427(95)00142-5
  • Maina, J., & Matsui, K. (2005). Elastic multi-layered analysis using DE-integration. Publications of the Research Institute for Mathematical Sciences, 41(4), 853–867. https://doi.org/10.2977/prims/1145474598
  • Myers, L. A., Roque, R., & Birgisson, B. (2001). Propagation mechanisms for surface-initiated longitudinal wheelpath cracks. Journal of the Transportation Research Board, 1778(1), 113–122. https://doi.org/10.3141/1778-14
  • Nilsson, R. N., Oost, I., & Hopman, P. C. (1996). Viscoelastic analysis of full-scale pavements: Validation of VEROAD. Transportation Research Record, 1539(1), 81–87. https://doi.org/10.1177/0361198196153900111
  • Qin, F., Yu, Y., & Rudolphi, T. (2010). Finite element modeling of viscoelastic stress analysis under moving loads. Int. J. Mech. Mater. Eng, 1(4), 226–233.
  • Rahman, A., Huang, H., Ai, C., Ding, H., Xin, C., & Lu, Y. (2019). Fatigue performance of interface bonding between asphalt pavement layers using four-point shear test set-up. International Journal of Fatigue, 121, 181–190. https://doi.org/10.1016/j.ijfatigue.2018.12.018
  • Roque, R., Zou, J., Kim, Y. R., Baek, C., Thirunavukkarasu, S., Underwood, B. S., & Guddati, M. N. (2010). Top-down cracking of hot-mix asphalt layers: Models for initiation and propagation (No. NCHRP Project 1-42A).
  • Saad, B., Mitri, H., & Poorooshasb, H. (2005). Three-dimensional dynamic analysis of flexible conventional pavement foundation. Journal of Transportation Engineering, 131(6), 460–469. https://doi.org/10.1061/(ASCE)0733-947X(2005)131:6(460)
  • Sangpetngam, B., Birgisson, B., & Roque, R. (2004). Multilayer boundary-element method for evaluating top-down cracking in hot-mix asphalt pavements. Transportation Research Record, 1896(1), 129–137. https://doi.org/10.3141/1896-13
  • Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. Springer.
  • Valkó, P. P., & Abate, J. (2004). Comparison of sequence accelerators for the Gaver method of numerical Laplace transform inversion. Computers & Mathematics with Applications, 48(3–4), 629–636. https://doi.org/10.1016/j.camwa.2002.10.017
  • Wang, H. (2011). Analysis of tire-pavement interaction and pavement responses using a decoupled modeling approach [Doctoral dissertation]. University of Illinois at Urbana-Champaign.
  • Wang, H., & Al-Qadi, I. L. (2010). Near-surface pavement failure under multiaxial stress state in thick asphalt pavement. Transportation Research Record, 2154(1), 91–99. https://doi.org/10.3141/2154-08
  • Wang, L. B., Myers, L. A., Mohammad, L. N., & Fu, Y. R. (2003). Micromechanics study on top-down cracking. Transportation Research Record, 1853(1), 121–133. https://doi.org/10.3141/1853-14
  • Wang, H., Ozer, H., Al-Qadi, I. L., & Duarte, C. A. (2013). Analysis of near-surface cracking under critical loading conditions using uncracked and cracked pavement models. Journal of Transportation Engineering, 139(10), 992–1000. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000562
  • Wu, S., & Muhunthan, B. (2019a). A mechanistic-empirical model for predicting top-down fatigue cracking in an asphalt pavement overlay. Road Materials and Pavement Design, 20(6), 1322–1353. https://doi.org/10.1080/14680629.2018.1443832
  • Wu, S., Wen, H., Zhang, W., Shen, S., Mohammad, L. N., Faheem, A., & Muhunthan, B. (2019b). Field performance of top-down fatigue cracking for warm mix asphalt pavements. International Journal of Pavement Engineering, 20(1), 33–43. https://doi.org/10.1080/10298436.2016.1248204
  • Zhao, Y., Alae, M., & Fu, G. (2018). Investigation of mechanisms of top-down fatigue cracking of asphalt pavement. Road Materials and Pavement Design, 19(6), 1436–1447. https://doi.org/10.1080/14680629.2017.1303394
  • Zhao, Y., Ni, Y., Wang, L., & Zeng, W. (2014). Viscoelastic response solutions of multilayered asphalt pavements. Journal of Engineering Mechanics, 140(10), 04014080. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000797

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.