323
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of lead time and manufacturing methods applied for polymer-modified bitumen emulsion (PMBE) on microsurfacing performance

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2271-2292 | Received 02 Mar 2021, Accepted 28 Jul 2021, Published online: 13 Aug 2021

References

  • Abdullin, A. I., & Emelyanycheva, E. A. (2020). Water-bitumen emulsions based on surfactants of various types. Journal of Chemical Technology and Metallurgy, 55(1), 73–80.
  • Abedini, M., Hassani, A., Kaymanesh, M. R., Yousefi, A. A., & Abedini, H. (2018). Multiple stress creep and recovery behavior of SBR-modified bitumen emulsions. Journal of Testing and Evaluation, 48(4), 3116–3124. https://doi.org/10.1520/JTE20180031
  • Alan, J., & Sundaram, L. (2002). Emulsification of high softening point hydrocarbons. Akzo Nobel Surface Chemistry LLC, U.S.A.
  • Anderson, D. A., Christensen, D. W., & Bahia, H. (1991). Physical properties of asphalt cement and the development of performance-related specifications. Journal of the Association of Asphalt Paving Technologists, 60, 437–475.
  • Asphalt Institute. (2008). A basic asphalt emulsion manual, MS-19 (4th ed.). Asphalt Institute and Asphalt Emulsion Manufacturers Association. https://bookstore.asphaltinstitute.org/catalog/book/ms19asphaltemulsion
  • ASTM D1076. (2018). Standard specification for rubber – concentrated, ammonia preserved, creamed, and centrifuged natural latex. American Society of Testing and Materials.
  • ASTM D6372. (2015). Standard practice for design, testing, and construction of microsurfacing. ASTM International.
  • ASTM D7175. (2015). Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer. American Society of Testing and Materials.
  • ASTM D7497. (2018). Standard practice for recovering residue from emulsified asphalt using low temperature evaporative technique. American Society of Testing and Materials.
  • Banerjee, A., de Fortier Smit, A., & Prozzi, J. A. (2012). Modeling the effect of environmental factors on evaporative water loss in asphalt emulsions for chip seal applications. Construction and Building Materials, 27(1), 158–164. https://doi.org/10.1016/j.conbuildmat.2011.08.001
  • Baumgardner, G. (2006). Asphalt emulsion manufacturing today and tomorrow. In Asphalt emulsion technology (pp. 15–26). Transportation Research Circular E-C102.
  • Bhargava, N., Siddagangaiah, A. K., & Ryntathiang, T. L. (2020). State of the art review on design and performance of microsurfacing. Road Materials and Pavement Design, 21(8), 2091–2125. https://doi.org/10.1080/14680629.2019.1607771
  • Booshehrian, A., Mogawer, W. S., & Bonaquist, R. (2013). How to construct an asphalt binder master curve and assess the degree of blending between RAP and virgin binders. Journal of Materials in Civil Engineering, 25(12), 1813–1821. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000726
  • Boucard, L., Schmitt, V., Farcas, F., & Gaudefroy, V. (2015). Bitumen emulsions formulation and destabilisation process relationship: Influence of salts addition. Road Materials and Pavement Design, 16(sup1), 330–348. https://doi.org/10.1080/14680629.2015.1030910
  • Brûlé, B., Brion, Y., & Tanguy, A. (1988). Paving asphalt polymer blends: Relationships between composition, structure and properties (with discussion). Association of Asphalt Paving Technologists Proc (Vol. 57).
  • Chávez-Valencia, L. E., Alonso, E., Manzano, A., Pérez, J., Contreras, M. E., & Signoret, C. (2007). Improving the compressive strengths of cold-mix asphalt using asphalt emulsion modified by polyvinyl acetate. Construction and Building Materials, 21(3), 583–589. https://doi.org/10.1016/j.conbuildmat.2005.07.017
  • Chen, Z., & Li, Z. (2020). Preparation and stabilisation mechanism of asphalt-in-water pickering emulsion stabilised by SiO2 nanoparticles. Road Materials and Pavement Design, 1–40. https://doi.org/10.1080/14680629.2020.1826351
  • Cheng, P., Yi, J., Chen, Z., Luan, H., & Feng, D. (2020). Influence factors of strength and performance of foamed asphalt cold recycled mixture. Road Materials and Pavement Design, 1–16. https://doi.org/10.1080/14680629.2020.1826343
  • Daneshvar, D., Motamed, A., & Imaninasab, R. (2020). Improving fracture and moisture resistance of cold mix asphalt (CMA) using crumb rubber and cement. Road Materials and Pavement Design, 1–19. https://doi.org/10.1080/14680629.2020.1830152
  • Fazaeli, H., Behbahani, H., Amini, A. A., Rahmani, J., & Yadollahi, G. (2012). High and low temperature properties of FT-paraffin-modified bitumen. Advances in Materials Science and Engineering, 2012, 1–7. https://doi.org/10.1155/2012/406791
  • Flores, G., Gallego, J., Miranda, L., & Marcobal, J. R. (2020). Cold asphalt mix with emulsion and 100% rap: Compaction energy and influence of emulsion and cement content. Construction and Building Materials, 250, 118804. https://doi.org/10.1016/j.conbuildmat.2020.118804
  • Forbes, A., Haverkamp, R. G., Robertson, T., Bryant, J., & Bearsley, S. (2001). Studies of the microstructure of polymer-modified bitumen emulsions using confocal laser scanning microscopy. Journal of Microscopy, 204(3), 252–257. https://doi.org/10.1046/j.1365-2818.2001.00955.x
  • Gingras, J.-P., Tanguy, P. A., Mariotti, S., & Chaverot, P. (2005). Effect of process parameters on bitumen emulsions. Chemical Engineering and Processing: Process Intensification, 44(9), 979–986. https://doi.org/10.1016/j.cep.2005.01.003
  • Godenzoni, C., Graziani, A., & Perraton, D. (2017). Complex modulus characterisation of cold-recycled mixtures with foamed bitumen and different contents of reclaimed asphalt. Road Materials and Pavement Design, 18(1), 130–150. https://doi.org/10.1080/14680629.2016.1142467
  • Gransberg, D. D. (2010). Microsurfacing: A synthesis of highway practices (NCHRP Synthesis 411). Transportation Research Board.
  • Gutierrez, X., Silva, F., Chirinos, M., Leiva, J., & Rivas, H. (2002). Bitumen-in-water emulsions: An overview on formation, stability, and rheological properties. Journal of Dispersion Science and Technology, 23(1–3), 405–418. https://doi.org/10.1080/01932690208984213
  • Hafezzadeh, R., & Kavussi, A. (2019). Application of microsurfacing in repairing pavement surface rutting. Road Materials and Pavement Design, 1–12. https://doi.org/10.1080/14680629.2019.1663243
  • Hou, S., Chen, C., Zhang, J., Shen, H., & Gu, F. (2018). Thermal and mechanical evaluations of asphalt emulsions and mixtures for microsurfacing. Construction and Building Materials, 191, 1221–1229. https://doi.org/10.1016/j.conbuildmat.2018.10.091
  • Hu, C., Zhao, J., Leng, Z., Partl, M. N., & Li, R. (2019). Laboratory evaluation of waterborne epoxy bitumen emulsion for pavement preventative maintenance application. Construction and Building Materials, 197, 220–227. https://doi.org/10.1016/j.conbuildmat.2018.11.223
  • Islam, R. M., Abadie, C., & Wasiuddin, N. M. (2017). Multiple shear step approach to determine the rotational viscosity of asphalt emulsions and its correlation with water content of original and diluted emulsions. International Journal of Pavement Engineering, 18(12), 1122–1129. https://doi.org/10.1080/10298436.2016.1162305
  • ISSA. (2017a). Outline guide design procedure for slurry seal. Technical Bulletin 111. International slurry surfacing association.
  • ISSA. (2017b). Test method formeasurement of excess asphalt in bituminous mixtures by use of a loaded wheel tester and sand adhesion. Technical Bulletin 109. International slurry surfacing association.
  • ISSA. (2017c). Test method for measurement of stability and resistance to compaction, vertical and lateral displacement of multilayered fine aggregate coldmixes. Technical Bulletin 147. International slurry surfacing association.
  • ISSA. (2017d). Laboratory test method for wet track abrasion of slurry surfacing systems. Technical Bulletin 100. International slurry surfacing association.
  • ISSA. (2017e). Test method to classify emulsified asphalt/aggregatemixture systems bymodified cohesion testermeasurement of set and cure characteristics. Technical Bulletin 139. International slurry surfacing association.
  • ISSA A143. (2010). Recommended performance guideline for micro surfacing. International Slurry Surfacing Association.
  • Izadi, A., Zalnezhad, M., Bozorgi Makerani, P., & Zalnezhad, H. (2020). Mix design and performance evaluation of coloured slurry seal mixture containing natural iron oxide red pigments. Road Materials and Pavement Design, 1–18. https://doi.org/10.1080/14680629.2020.1860803
  • Jin, T. H., Warid, M. N. M., Idham, M. K., Hainin, M. R., Yaacob, H., Hassan, N. A., Ismail, C. R., & Afiqah, R. N. (2019). Modification of emulsified bitumen using styrene-butadiene rubber (SBR). IOP Conference Series: Materials Science and Engineering, 527, 012050. https://doi.org/10.1088/1757-899X/527/1/012050
  • Johannes, P. T. (2014). Development of an improved mixture design framework for slurry seals and micro-surfacing treatments. The University of Wisconsin-Madison.
  • Keymanesh, M. R., Ziari, H., Zalnezhad, H., & Zalnezhad, M. (2021). Mix design and performance evaluation of microsurfacing containing electric arc furnace (EAF) steel slag filler. Construction and Building Materials, 269, 121336. https://doi.org/10.1016/j.conbuildmat.2020.121336
  • Kiihnl, L. P. (2020). Best practices for asphalt emulsion particle size analyses using a coulter counter. University of Arkansas.
  • Kim, Y. R., Underwood, B., Far, M. S., Jackson, N., Puccinelli, J., & Engineers, N. C. (2011). LTPP computed parameter: Dynamic modulus. FHWA-HRT-10-035 Final Report, FHWA, McLean, VA.
  • King, G., & Johnston, J. (2012). Polymer modified asphalt emulsions composition, uses, and specifications for surface treatments. Federal Highway Administration.
  • Lesueur, D. (2011). Polymer modified bitumen emulsions (PMBEs). In T. McNally (Ed.), Polymer modified bitumen (pp. 25–42). Woodhead. https://doi.org/10.1533/9780857093721.1.25
  • Lesueur, D., & Potti, J. J. (2004). Cold mix design: A rational approach based on the current understanding of the breaking of bituminous emulsions. Road Materials and Pavement Design, 5(sup1), 65–87. https://doi.org/10.1080/14680629.2004.9689988
  • Li, J., Zhu, Z., Ke, L., & Wang, Z. (2020). Rheological performance investigation of high viscosity liquid asphalt. Road Materials and Pavement Design, 1–15. https://doi.org/10.1080/14680629.2020.1792965
  • Liu, Z. G., Zong, L., Zhao, L. L., & Xie, X. M. (2013). Preparation and storage stability of asphalt emulsions made from modified lignin cationic asphalt emulsifiers. Applied Mechanics and Materials, 357–360, 781–785. https://doi.org/10.4028/www.scientific.net/AMM.357-360.781
  • Luo, X., Gu, F., Ling, M., & Lytton, R. L. (2018). Review of mechanistic-empirical modeling of top-down cracking in asphalt pavements. Construction and Building Materials, 191, 1053–1070. https://doi.org/10.1016/j.conbuildmat.2018.10.005
  • Mallick, R. B., & El-Korchi, T. (2013). Pavement engineering: Principles and practice (2nd ed.). CRC Press.
  • Mezger, T. (2020). The rheology handbook: For users of rotational and oscillatory rheometers (5th ed.). Vincentz Network. https://doi.org/10.1515/9783748603702
  • Monney, O. K., Khalid, H. A., & Artamendi, I. (2007). Assessment of fracture properties of emulsified asphalt mixtures. Road Materials and Pavement Design, 8(1), 87–102. https://doi.org/10.1080/14680629.2007.9690068
  • Morrison, I. (2003). Dispersions (Kirk-Othmer encyclopedia of chemical technology. John Wiley. https://doi.org/10.1002/0471238961.0409191613151818.a01
  • Pang, J., Du, S., Chang, R., Pei, Q., & Cui, D. (2015). Effect of emulsifier content on the rheological properties of asphalt emulsion residues. Journal of Applied Polymer Science, 132(15), n/a–n/a. https://doi.org/10.1002/app.41806
  • Read, J., & Whiteoak, D. (2003). The shell bitumen handbook (5th ed). Thomas Telford.
  • Redelius, P., Östlund, J.-A., & Soenen, H. (2016). Field experience of cold mix asphalt during 15 years. Road Materials and Pavement Design, 17(1), 223–242. https://doi.org/10.1080/14680629.2015.1068702
  • Ruggles, C. S. (2004). The efficient use of environmentally-friendly natural rubber latex in road construction-past, present and the future. Rubber in Transport.
  • Ryms, M., Denda, H., & Jaskuła, P. (2017). Thermal stabilization and permanent deformation resistance of LWA/PCM-modified asphalt road surfaces. Construction and Building Materials, 142, 328–341. https://doi.org/10.1016/j.conbuildmat.2017.03.050
  • Salomon, D. (2006). Asphalt emulsion technology, TRC E-102. Transportation Research Board. http://onlinepubs.trb.org/onlinepubs/circulars/ec102.pdf
  • Shafii, M., Rahman, M. A., & Ahmad, J. (2011). Polymer modified asphalt emulsion. International Journal of Civil and Environmental Engineering, 11(6), 43–49. https://doi.org/10.1533/9780857093721.1.25
  • Shirkavand Hadavand, B., Ghobadi Jola, B., Didehban, K., & Mirshokraie, A. (2020). Modified bitumen emulsion by anionic polyurethane dispersion nanocomposites. Road Materials and Pavement Design, 21(6), 1763–1774. https://doi.org/10.1080/14680629.2019.1567373
  • Stimilli, A., Ferrotti, G., Graziani, A., & Canestrari, F. (2013). Performance evaluation of a cold-recycled mixture containing high percentage of reclaimed asphalt. Road Materials and Pavement Design, 14(sup1), 149–161. https://doi.org/10.1080/14680629.2013.774752
  • Takamura, K., & Heckmann, W. (2001). Polymer network formation in the pavement using SBR latex modified asphalt emulsions. Studies in Surface Science and Catalysis, 132, 271–274. https://doi.org/10.1016/S0167-2991(01)82085-1
  • Tebaldi, G., Dave, E. V., Marsac, P., Muraya, P., Hugener, M., Pasetto, M., Graziani, A., Grilli, A., Bocci, M., Marradi, A., Wendling, L., Gaudefroy, V., Jenkins, K., Loizos, A., & Canestrari, F. (2014). Synthesis of standards and procedures for specimen preparation and in-field evaluation of cold-recycled asphalt mixtures. Road Materials and Pavement Design, 15(2), 272–299. https://doi.org/10.1080/14680629.2013.866707
  • Xu, L., Li, X., Zong, Q., & Xiao, F. (2021). Chemical, morphological and rheological investigations of SBR/SBS modified asphalt emulsions with waterborne acrylate and polyurethane. Construction and Building Materials, 272, 121972. https://doi.org/10.1016/j.conbuildmat.2020.121972
  • Zalnezhad, M., & Hesami, E. (2020). Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture. Journal of Traffic and Transportation Engineering (English Edition), 7(2), 215–226. https://doi.org/10.1016/j.jtte.2018.12.005
  • Zhang, Q., Fan, W., Wang, T., Sunarso, J., & Nan, G. (2014). The influence of emulsifier type on conventional properties, thermal behavior, and microstructure of styrene-butadiene-styrene polymer modified bitumen. Petroleum Science and Technology, 32(10), 1184–1190. https://doi.org/10.1080/10916466.2011.645102
  • Zhang, R., He, Y., & Ao, Z. (2007). An asphalt emulsion modified by compound of epoxy resin and styrene-butadiene rubber emulsion. International Journal of Mathematical Models And Methods In Applied Sciences, 1(4), http://www.wseas.us/e-library/conferences/2007trinidad/papers/556-093.pdf
  • Ziari, H., Keymanesh, M. R., & Zalnezhad, H. (2020). Effect of emulsifying agent on rheological properties of bitumen emulsion modified with different techniques of adding SBR latex polymer. Road Materials and Pavement Design, 1–17. https://doi.org/10.1080/14680629.2020.1835695

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.