446
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of geopolymer as an additive on the mechanical performance of asphalt

, , , , , & show all
Pages 2466-2485 | Received 22 May 2021, Accepted 31 Aug 2021, Published online: 27 Sep 2021

References

  • Bhat, H., & Mir, M. (2020). Investigating the effects of nano-Al2O3 on high and intermediate temperature performance properties of asphalt binder. Road Materials and Pavement Design, 1–22. https://doi.org/10.1080/14680629.2020.1778509
  • Chindaprasirt, P., & Chalee, W. (2014). Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Construction and Building Materials, 63, 303–310. https://doi.org/10.1016/j.conbuildmat.2014.04.010
  • Cong, P., Guo, X., & Mei, L. (2020). Investigation on rejuvenation methods of aged SBS modified asphalt binder. Fuel, 279, 118556. https://doi.org/10.1016/j.fuel.2020.118556
  • Ding, Y., Huang, B., & Shu, X. (2018). Blending efficiency evaluation of plant asphalt mixtures using fluorescence microscopy. Construction and Building Materials, 161, 461–467. https://doi.org/10.1016/j.conbuildmat.2017.11.138
  • Duan, P., Yan, C., & Zhou, W. (2017). Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cement and Concrete Composites, 78, 108–119. https://doi.org/10.1016/j.cemconcomp.2017.01.009
  • Fengler, R. Z., Osmari, P. H., Leite, L. F. M., Nascimento, L. A. H. D., Fritzen, M. A., & Aragão, F. T. S. (2019). Impact of the addition of trinidad lake asphalt (TLA) on the rheological and mechanical behavior of two asphalt binders. Road Materials and Pavement Design, 20(sup2), S827–S840. https://doi.org/10.1080/14680629.2019.1633789
  • Gong, M., Yang, J., Wei, J., Pauli, T., & Yu, H. (2017). Quantitative characterisation of asphalt's composition–microstructure relationship based on atomic force microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy tests. Road Materials and Pavement Design, 18(3-4), 507–532. https://doi.org/10.1080/14680629.2016.1181560
  • Gong, M., Yang, J., Yao, H., Wang, M., Niu, X., & Haddock, J. E. (2018). Investigating the performance, chemical, and microstructure properties of carbon nanotube-modified asphalt binder. Road Materials and Pavement Design, 19(7), 1499–1522. https://doi.org/10.1080/14680629.2017.1323661
  • Guo, J., Guo, J., Wang, S., & Xu, Z. (2009). Asphalt modified with nonmetals separated from pulverized waste printed circuit boards. Environmental Science & Technology, 43(2), 503–508. https://doi.org/10.1021/es8023012
  • Hosseinnezhad, S., Kabir, S. F., Oldham, D., Mousavi, M., & Fini, E. H. (2019). Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction. Journal of Cleaner Production, 225, 82–89. https://doi.org/10.1016/j.jclepro.2019.03.219
  • Hou, X., Lv, S., Chen, Z., & Xiao, F. (2018). Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement, 121, 304–316. https://doi.org/10.1016/j.measurement.2018.03.001
  • Hoy, M., Horpibulsuk, S., & Arulrajah, A. (2016a). Strength development of recycled asphalt pavement – Fly ash geopolymer as a road construction material. Construction and Building Materials, 117, 209–219. https://doi.org/10.1016/j.conbuild-mat.2016.04.136
  • Hoy, M., Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., & Arulrajah, A. (2016b). Recycled asphalt pavement – fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations. Science of The Total Environment, 573, 19–26. https://doi.org/10.1016/j.scitotenv.2016.08.078
  • Hoy, M., Rachan, R., Horpibulsuk, S., Arulrajah, A., & Mirzababaei, M. (2017). Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement – Fly ash geopolymer. Construction and Building Materials, 144, 624–634. https://doi.org/10.1016/j.conbuildmat.2017.03.243
  • Hu, K., Han, S., Liu, Z., & Niu, D. (2019). Determination of morphology characteristics of polymer-modified asphalt by a quantification parameters approach. Road Materials and Pavement Design, 20(6), 1306–1321. https://doi.org/10.1080/14680629.2018.1443831
  • Jitsangiam, P., Suwan, T., Pimraksa, K., Sukontasukkul, P., & Chindaprasirt, P. (2021). Challenge of adopting relatively low strength and self-cured geopolymer for road construction application: A review and primary laboratory study. The International Journal of Pavement Engineering, 22(11), 1454–1468. https://doi.org/10.1080/10298436.2019.1696967
  • JTG E20. (2011). Standard test methods of bitumen and bituminous mixtures for highway engineering. Ministry of Communication.
  • JTG F40. (2004). Technical specification for construction of highway asphalt pavement. Ministry of Communication.
  • Kim, H., & Lee, S. (2013). Laboratory investigation of different standards of phase separation in crumb rubber modified asphalt binders. Journal of Materials in Civil Engineering, 25(12), 1975–1978. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000751
  • Koyun, A., Büchner, J., Wistuba, M. P., & Grothe, H. (2020). Rheological, spectroscopic and microscopic assessment of asphalt binder ageing. Road Materials and Pavement Design, 1–18. https://doi.org/10.1080/14680629.2020.1820891
  • Kumar, A., Choudhar, R., & Kumar, A. (2020). Characterisation of asphalt binder modified with ethylene-propylene-diene-monomer (EPDM) rubber waste from automobile industry[J]. Road Materials and Pavement Design, 1–22. http://doi.org/10.1080/14680629.2020.1740772
  • Lahoti, M., Wong, K. K., Tan, K. H., & Yang, E. (2018). Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Materials & Design, 154, 8–19. https://doi.org/10.1016/j.matdes.2018.05.023
  • Lei, Y., Wang, H., Fini, E. H., You, Z., Yang, X., Gao, J., Dong, S., & Jiang, G. (2018). Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt. Construction and Building Materials, 191, 692–701. https://doi.org/10.1016/j.conbuildmat.2018.10.064
  • Liang, M., Xin, X., Fan, W., Luo, H., Wang, X., & Xing, B. (2015). Investigation of the rheological properties and storage stability of CR/SBS modified asphalt. Construction and Building Materials, 74, 235–240. https://doi.org/10.1016/j.conbuild-mat.2014.10.022
  • Moreno-Navarro, F., Sol-Sánchez, M., Gámiz, F., & Rubio-Gámez, M. C. (2018). Mechanical and thermal properties of graphene modified asphalt binders. Construction and Building Materials, 180, 265–274. https://doi.org/10.1016/j.con-buildmat.2018.05.259
  • Navarro, F. J., Partal, P., Martıínez-Boza, F., & Gallegos, C. (2004). Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens. Fuel, 83(14-15), 2041–2049. https://doi.org/10.1016/j.fuel.2004.04.003
  • Poltue, T., Suddeepong, A., Horpibulsuk, S., Samingthong, W., Arulrajah, A., & Rashid, A. S. A. (2020). Strength development of recycled concrete aggregate stabilized with fly ash-rice husk ash based geopolymer as pavement base material. Road Materials and Pavement Design, 21(8), 2344–2355. https://doi.org/10.1080/14680629.2019.1593884
  • Qing, Z., Qi-Cheng, L., Peng, L., Chuan-Sheng, C., & Jiang-Rong, K. (2020). Study on modification mechanism of nano-ZnO/polymerised styrene butadiene composite-modified asphalt using density functional theory. Road Materials and Pavement Design, 21(5), 1426–1438. https://doi.org/10.1080/14680629.2018.1552888
  • Rosyidi, S. A. P., Rahmad, S., Yusoff, N. I. M., Shahrir, A. H., Ibrahim, A. N. H., Ismail, N. F. N., & Badri, K. H. (2020). Investigation of the chemical, strength, adhesion and morphological properties of fly ash based geopolymer-modified bitumen. Construction and Building Materials, 255, 119364. https://doi.org/10.1016/j.conbuildmat.2020.119364
  • Sarath, C. K., Krishnaiah, S., Reddy, N. G., Hossiney, N., & Peng, L. (2021). Strength development of geopolymer composites made from red mud – fly ash as a subgrade material in road construction. Journal of Hazardous, 25(1). http://doi.org/10.1061/(ASCE)HZ.2153-5515.0000575
  • Tang, N., Deng, Z., Dai, J., Yang, K., Chen, C., & Wang, Q. (2018). Geopolymer as an additive of warm mix asphalt: Preparation and properties. Journal of Cleaner Production, 192, 906–915. https://doi.org/10.1016/j.jclepro.2018.04.276
  • Tang, N., Yang, K., Alrefaei, Y., Dai, J., Wu, L., & Wang, Q. (2020). Reduce VOCs and PM emissions of warm-mix asphalt using geopolymer additives. Construction and Building Materials, 244, 118338. https://doi.org/10.1016/j.conbuildmat.2020.118338
  • Wang, M., & Xing, C. (2021). Evaluation of microstructural features of Buton rock asphalt components and rheological properties of pure natural asphalt modified asphalt. Construction and Building Materials, 267, 121132. https://doi.org/10.1016/j.conbuildmat.2020.121132
  • Wu, Y., Lu, B., Bai, T., Wang, H., Du, F., Zhang, Y., Cai, L., Jiang, C., & Wang, W. (2019). Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Construction and Building Materials, 224, 930–949. https://doi.org/10.1016/j.conbuildmat.2019.07.112
  • Yan, C., Huang, W., Xiao, F., Wang, L., & Li, Y. (2018). Proposing a new infrared index quantifying the aging extent of SBS-modified asphalt. Road Materials and Pavement Design, 19(6), 1406–1421. https://doi.org/10.1080/14680629.2017.1318082
  • Yan, K., Sun, H., You, L., & Wu, S. (2020). Characteristics of waste tire rubber (WTR) and amorphous poly alpha olefin (APAO) compound modified porous asphalt mixtures. Construction and Building Materials, 253, 119071. https://doi.org/10.1016/j.conbuildmat.2020.119071
  • Yao, H., Dai, Q., & You, Z. (2015). Fourier transform infrared spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Construction and Building Materials, 101, 1078–1087. https://doi.org/10.1016/j.conbuildmat.2015.10.085
  • Yu, J., Zhang, H., Sun, P., & Zhao, S. (2020). Laboratory performances of nano-particles/polymer modified asphalt mixtures developed for the region with hot summer and cold winter and field evaluation. Road Materials and Pavement Design, 21(6), 1529–1544. https://doi.org/10.1080/14680629.2018.1557070
  • Zhang, H., Gong, M., Gao, D., Yang, T., & Huang, Y. (2020a). Comparative analysis of mechanical behavior of composite modified asphalt mixture based on PG technology. Construction and Building Materials, 259, 119771. https://doi.org/10.1016/j.conbuildmat.2020.119771
  • Zhang, P., Gao, Z., Wang, J., Guo, J., Hu, S., & Ling, Y. (2020b). Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. Journal of Cleaner Production, 270, 122389. https://doi.org/10.1016/j.jclepro.2020.122389
  • Zhang, R., Wang, H., Gao, J., You, Z., & Yang, X. (2017). High temperature performance of SBS modified bio-asphalt. Construction and Building Materials, 144, 99–105. doi:10.1016/j.conbuildmat.2017.03.103

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.