429
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Highly active photocatalytic asphalt pavement for NOx removal using iron-doped g-C3N4

, , , , &
Pages 2531-2546 | Received 20 Oct 2020, Accepted 20 Sep 2021, Published online: 08 Oct 2021

References

  • Akhundi, A., Badiei, A., Ziarani, G. M., Habibi-Yangjeh, A., Muñoz-Batista, M. J., & Luque, R. (2020). Graphitic carbon nitride-based photocatalysts: Toward efficient organic transformation for value-added chemicals production. Molecular Catalysis, 488, 110902. https://doi.org/10.1016/j.mcat.2020.110902
  • Akhundi, A., Habibi-Yangjeh, A., Abitorabi, M., & Rahim Pouran, S. (2019). Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catalysis Reviews, 61(4), 595–628. https://doi.org/10.1080/01614940.2019.1654224
  • Ângelo, J., Andrade, L., Madeira, L. M., & Mendes, A. (2013). An overview of photocatalysis phenomena applied to NOx abatement. Journal of Environmental Management, 129(18), 522–539. https://doi.org/10.1016/j.jenvman.2013.08.006
  • Ângelo, J., Andrade, L., & Mendes, A. (2014). Highly active photocatalytic paint for NOx abatement under real-outdoor conditions. Applied Catalysis A General, 484(10), 17–25. https://doi.org/10.1016/j.apcata.2014.07.005
  • Asadzadeh-Khaneghah, S., & Habibi-Yangjeh, A. (2020). g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review. Journal of Cleaner Production, 276, 124319. https://doi.org/10.1016/j.jclepro.2020.124319
  • Bai, X. J., Li, W., Zong, R. L., & Zhu, Y. F. (2013). Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. Journal of Physical Chemistry C, 117(19), 9952–9961. https://doi.org/10.1021/jp402062d
  • Ballari, M. M., Hunger, M., Hüsken, G., & Brouwers, H. J. H. (2010). NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Applied Catalysis B–Environmental, 95(3), 245–254. https://doi.org/10.1016/j.apcatb.2010.01.002
  • Bojdys, M. J., Jens-Oliver, M., Markus, A., & Arne, T. (2008). Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chemistry – A European Journal, 14(27), 8177–8182. https://doi.org/10.1002/chem.200800190
  • Cao, X., Yang, X., Wu, T., Tang, B., & Guo, P. (2019). g-C3 N 4/TiO2 photocatalyst and its performance of NO degradation in emulsified asphalt. Journal of Materials in Civil Engineering, 31(5), 04019031. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002580
  • Chen, M., & Liu, Y. (2010). NOx removal from vehicle emissions by functionality surface of asphalt road. Journal of Hazardous Materials, 174(1), 375–379. https://doi.org/10.1016/j.jhazmat.2009.09.062
  • Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997–3027. https://doi.org/10.1016/j.watres.2010.02.039
  • Fan, W., Chan, K. Y., Zhang, C., Zhang, K., Ning, Z., & Leung, M. K. (2018). Solar photocatalytic asphalt for removal of vehicular NOx: A feasibility study. Applied Energy, 225, 535–541. https://doi.org/10.1016/j.apenergy.2018.04.134
  • Ge, L., Han, C., Jing, L., & Li, Y. (2011). Enhanced visible light photocatalytic activity of novel polymeric g-C 3 N 4 loaded with Ag nanoparticles. Applied Catalysis A General, 409(23), 215–222. https://doi.org/10.1016/j.apcata.2011.10.006
  • Habibi-Yangjeh, A., Asadzadeh-Khaneghah, S., Feizpoor, S., & Rouhi, A. (2020). Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses? Journal of Colloid and Interface Science, 580, 503–541. https://doi.org/10.1016/j.jcis.2020.07.047
  • Huang, Y., Zhang, J., Wang, Z., Liu, Y., Wang, P., Cao, J., & Ho, W. (2020). G-C3N4/TiO2 composite film in the fabrication of a photocatalytic air-purifying pavements. Solar RRL, 4(8), 2000170. https://doi.org/10.1002/solr.202000170
  • Jin, R. R., You, J. G., Qian, Z., Dan, L., Shao-Zheng, H. U., & Gui, J. Z. (2014). Preparation of Fe-doped graphitic carbon nitride with enhanced visible-light photocatalytic activity. Acta Physico-Chimica Sinica, 30(9), 1706–1712. https://doi.org/10.3866/pku.Whxb201406272
  • Li, X., Jian, Z., Shen, L., Ma, Y., Lei, W., Cui, Q., & Zou, G. (2009). Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Applied Physics A: Materials Science and Processing, 94(2), 387–392. https://doi.org/10.1007/s00339-008-4816-4
  • Liu, A. Y., & Cohen, M. L. (1989). Prediction of new low compressibility solids. Science, 245(4920), 841–842. https://doi.org/10.1126/science.245.4920.841
  • Liu, W., Wang, S. Y., Zhang, J., & Fan, J. F. (2015). Photocatalytic degradation of vehicle exhausts on asphalt pavement by TiO 2 /rubber composite structure. Construction and Building Materials, 81(6), 224–232. https://doi.org/10.1016/j.conbuildmat.2015.02.034
  • Liu, Z. Q., Xie, X. H., Xu, Q. Z., Guo, S. H., Li, N., Chen, Y. B., & Su, Y. Z. (2013). Electrochemical synthesis of ZnO/CdTe core-shell nanotube arrays for enhanced photoelectrochemical properties. Electrochimica Acta, 98(16), 268–273. https://doi.org/10.1016/j.electacta.2013.03.050
  • Lu, S., Li, C., Li, H. H., Zhao, Y. F., Gong, Y. Y., Niu, L. Y., Liu, X. J., & Wang, T. (2017). The effects of nonmetal dopants on the electronic, optical and chemical performances of monolayer g–C3N4 by first-principles study. Applied Surface Science, 392, 966–974. https://doi.org/10.1016/j.apsusc.2016.09.136
  • Ma, X., Lv, Y., Xu, J., Liu, Y., Zhang, R., & Zhu, Y. (2012). A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: A first-principles study. The Journal of Physical Chemistry C, 116(44), 23485–23493. https://doi.org/10.1021/jp308334x
  • Maeda, K., Wang, X., Nishihara, Y., Lu, D., Antonietti, M., & Domen, K. (2009). Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. Journal of Physical Chemistry C, 113(12), 4940–4947. https://doi.org/10.1021/jp809119m
  • Mills, A., & Elouali, S. (2015). The nitric oxide ISO photocatalytic reactor system: Measurement of NOx removal activity and capacity. Journal of Photochemistry and Photobiology A: Chemistry, 305, 29–36. https://doi.org/10.1016/j.jphotochem.2015.03.002
  • Perdew, J. P., & Levy, M. (1983). Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities. Physical Review Letters, 51(20), 1884–1887. https://doi.org/10.1103/PhysRevLett.51.1884
  • Pirhashemi, M., Habibi-Yangjeh, A., & Pouran, S. R. (2018). Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of Industrial and Engineering Chemistry, 62, 1–25. https://doi.org/10.1016/j.jiec.2018.01.012
  • Ren, C., Men, Q., Gao, X., Fu, G., Lei, W., & Hua, S. (2015). Research on the application of photocatalytic technology for funetional air filter material. Environmental Engineering, 33(2), 72–75. https://doi.org/10.13205/j.hjgc.201502015
  • Ren, H., Koshy, P., Chen, W.-F., Qi, S., & Sorrell, C. C. (2017). Photocatalytic materials and technologies for air purification. Journal of Hazardous Materials, 325, 340–366. https://doi.org/10.1016/j.jhazmat.2016.08.072
  • Segall, M., Lindan, P. J. D., Probert, M. A., Pickard, C. J., Hasnip, P. J., Clark, S. J., & Payne, M. C. (2002). First-principles simulation: Ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14(11), 2717–2744. https://doi.org/10.1088/0953-8984/14/11/301
  • Shekofteh-Gohari, M., Habibi-Yangjeh, A., Abitorabi, M., & Rouhi, A. (2018). Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: A review. Critical Reviews in Environmental Science and Technology, 48(10–12), 806–857. https://doi.org/10.1080/10643389.2018.1487227
  • Shen, S., Burton, M., Jobson, B., & Haselbach, L. (2012). Pervious concrete with titanium dioxide as a photocatalyst compound for a greener urban road environment. Construction and Building Materials, 35(10), 874–883. https://doi.org/10.1016/j.conbuildmat.2012.04.097
  • Sikkema, J. K., Ong, S. K., & Alleman, J. E. (2015). Photocatalytic concrete pavements: Laboratory investigation of NO oxidation rate under varied environmental conditions. Construction and Building Materials, 100, 305–314. https://doi.org/10.1016/j.conbuildmat.2015.10.005
  • Skalska, K., Miller, J. S., & Ledakowicz, S. (2010). Trends in NO(x) abatement: A review. Science of the Total Environment, 408(19), 3976–3989. https://doi.org/10.1016/j.scitotenv.2010.06.001
  • Teter, D. M., & Hemley, R. J. (1996). Low-compressibility carbon nitrides. Science, 271(5245), 53–55. https://doi.org/10.1126/science.271.5245.53
  • Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J. O., Schlögl, R., & Carlsson, J. M. (2008). Cheminform abstract: Graphitic carbon nitride materials: Variation of structure and morphology and their Use as metal-free catalysts. Journal of Materials Chemistry, 18(41), 4893–4908. https://doi.org/10.1039/B800274F
  • Tonda, S., Kumar, S., Kandula, S., & Shanker, V. (2014). Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. Journal of Materials Chemistry A, 2(19), 6772–6780. https://doi.org/10.1039/c3ta15358d
  • Tong, T., He, B., Zhu, B., Cheng, B., & Zhang, L. (2018). First-principle investigation on charge carrier transfer in transition-metal single atoms loaded g-C3N4. Applied Surface Science, 459, 385–392. https://doi.org/10.1016/j.apsusc.2018.08.007
  • Wang, F., Ketzel, M., Ellermann, T., Wåhlin, P., Jensen, S. S., Fang, D., & Massling, A. (2010). Particle number, particle mass and NO x emission factors at a highway and an urban street in Copenhagen. Atmospheric Chemistry and Physics, 10(6), 2745–2764. https://doi.org/10.5194/acp-10-2745-2010
  • Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76–80. https://doi.org/10.1038/nmat2317
  • Wang, Y., Wang, X. C., & Antonietti, M. (2012). Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie-International Edition, 51(1), 68–89. https://doi.org/10.1002/anie.201101182
  • Yan, S. C., Li, Z. S., & Zou, Z. G. (2010). Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir, 26(6), 3894–3901. https://doi.org/10.1021/la904023j
  • Yi, H., Huang, D.,Qin, L., Zeng, G., Lai, C., Cheng, M., Ye, S., Songa, B., Ren, X., & Guo, X. (2018). Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Applied Catalysis B: Environmental, 239, 408–424. https://doi.org/10.1016/j.apcatb.2018.07.068
  • Yu, C. L., Kai, Y., Shu, Q., Yu, J. C., Cao, F. F., Xin, L., & Zhou, X. (2012). Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts. Science China-Chemistry, 55(9), 1802–1810. https://doi.org/10.1007/s11426-012-4721-8
  • Zhu, B., Zhang, J., Jiang, C., Cheng, B., & Yu, J. (2017). First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 207, 27–34. https://doi.org/10.1016/j.apcatb.2017.02.020
  • Zhu, B., Zhang, L., Cheng, B., & Yu, J. (2018). First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Applied Catalysis B: Environmental, 224, 983–999. https://doi.org/10.1016/j.apcatb.2017.11.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.