394
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An experimental investigation on geotechnical properties of a clayey soil stabilised with lime and zeolite in base and subbase courses

, ORCID Icon, & ORCID Icon
Pages 2924-2941 | Received 12 May 2021, Accepted 20 Oct 2021, Published online: 11 Nov 2021

References

  • Afrasiabian, A., Salimi, M., Movahedrad, M., & Vakili, A. H. (2019). Assessing the impact of GBFS on mechanical behaviour and microstructure of soft clay. International Journal of Geotechnical Engineering, 15(3), 1–11. https://doi.org/10.1080/19386362.2019.1565393
  • Ahmadi Chenarboni, H., Lajevardi, S. H., MolaAbasi, H., & Zeighami, E. (2021). The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils. Construction and Building Materials, 272(1), 121630. https://doi.org/10.1016/j.conbuildmat.2020.121630
  • Akbari, H. R., Sharafi, H., & Goodarzi, A. R. (2020). Effect of polypropylene fiber inclusion in kaolin clay stabilized with lime and nano-zeolite considering temperatures of 20 and 40 C. Bulletin of Engineering Geology and the Environment, 80(2), 1–15. https://doi.org/10.1007/s10064-020-02028-x
  • Al-Mukhtar, M., Lasledj, A., & Alcover, J. F. (2010). Behaviour and mineralogy changes in lime-treated expansive soil at 20 °C. Applied Clay Science, 50(2), 191–198. https://doi.org/10.1016/j.clay.2010.07.023
  • Anggraini, V., Asadi, A., Huat, B. B. K., & Nahazanan, H. (2015). Effects of coir fibers on tensile and compressive strength of lime treated soft soil. Measurement, 59, 372–381. https://doi.org/10.1016/j.measurement.2014.09.059
  • Arulrajah, A., Piratheepan, J., Aatheesan, T., & Bo, M. W. (2011). Geotechnical properties of recycled crushed brick in pavement applications. Journal of Materials in Civil Engineering, 23(10), 1444–1452. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000319
  • ASTM C127. (2012). Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate.
  • ASTM D2166. (2000). Standard test method of unconfined compressive strength of cohesive soil. Astm Int’L.
  • ASTM D2850. (2015). Standard test method for unconsolidated-undrained triaxial compression test on cohesive soils. ASTM International.
  • ASTM D422-63. (2007). Standard test method for particle-size analysis of soils. ASTM International. Doi, 10, 1520.
  • ASTM D4318. (2010). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International.
  • ASTM D698. (2012). Standard test methods for laboratory compaction characteristics of soil using standard effort.
  • ASTM D854. (2000). Standard test methods for specific gravity of soil solids by water pycnometer, 2458000(C), 1–7.
  • Avci, E., & Mollamahmutoğlu, M. (2018). Clinker efficiency in the treatment of low-plasticity clay. Journal of Materials in Civil Engineering, 30(8), 04018195. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002394
  • Baldovino, J. J. A., Izzo, R. L. S., Rose, J. L., & Domingos, M. D. I. (2021). Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization. Construction and Building Materials, 271, 121874. https://doi.org/10.1016/j.conbuildmat.2020.121874
  • Cabalar, A. F., Awraheem, M. H., & Khalaf, M. M. (2018). Geotechnical properties of a low-plasticity clay with biopolymer. Journal of Materials in Civil Engineering, 30(8), 04018170. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002380
  • Changizi, F., Ghasemzadeh, H., & Ahmadi, S. (2021). Evaluation of strength properties of clay treated by nano-SiO2 subjected to freeze–thaw cycles. Road Materials and Pavement Design, 1–18. https://doi.org/10.1080/14680629.2021.1883466
  • Cokca, E., Yazici, V., & Ozaydin, V. (2009). Stabilization of expansive clays using granulated blast furnace slag (GBFS) and GBFS-cement. Geotechnical and Geological Engineering, 27(4), 489–499. https://doi.org/10.1007/s10706-008-9250-z
  • Consoli, N. C., da Silva, A. P., Nierwinski, H. P., & Sosnoski, J. (2018). Durability, strength, and stiffness of compacted gold tailings–cement mixes. Canadian Geotechnical Journal, 55(4), 486–494. https://doi.org/10.1139/cgj-2016-0391
  • Craig, R. F. (2004). Craig’s soil mechanics. CRC Press.
  • Dang, L. C., Fatahi, B., & Khabbaz, H. (2016). Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres. Procedia Engineering, 143, 658–665. https://doi.org/10.1016/j.proeng.2016.06.093
  • Dash, S. K., & Hussain, M. (2012). Lime stabilization of soils: Reappraisal. Journal of Materials in Civil Engineering, 24(6), 707–714. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000431
  • Dhar, S., & Hussain, M. (2019). The strength and microstructural behavior of lime stabilized subgrade soil in road construction. International Journal of Geotechnical Engineering. https://doi.org/10.1080/19386362.2019.1598623
  • Eades, J. L., & Grim, R. E. (1966). A quick test to determine lime requirements for lime stabilization. Highway Research Record, (139), 61–72. http://onlinepubs.trb.org/Onlinepubs/hrr/1966/139/139-005.pdf
  • Eyo, E. U., Ng’ambi, S., & Abbey, S. J. (2020). Performance of clay stabilized by cementitious materials and inclusion of zeolite/alkaline metals-based additive. Transportation Geotechnics, 23. https://doi.org/10.1016/j.trgeo.2020.100330
  • Farouk, A., & Shahien, M. M. (2013). Ground improvement using soil–cement columns: Experimental investigation. Alexandria Engineering Journal, 52(4), 733–740. https://doi.org/10.1016/j.aej.2013.08.009
  • Gao, Y., Qian, H., Li, X., Chen, J., & Jia, H. (2018). Effects of lime treatment on the hydraulic conductivity and microstructure of loess. Environmental Earth Sciences, 77(14), 529. https://doi.org/10.1007/s12665-018-7715-9
  • Goodarzi, A. R., Akbari, H. R., & Salimi, M. (2016). Enhanced stabilization of highly expansive clays by mixing cement and silica fume. Applied Clay Science, 132-133, 675–684. https://doi.org/10.1016/j.clay.2016.08.023
  • Harichane, K., Ghrici, M., Kenai, S., & Grine, K. (2011). Use of natural pozzolana and lime for stabilization of cohesive soils. Geotechnical and Geological Engineering, 29(5), 759–769. https://doi.org/10.1007/s10706-011-9415-z
  • Ikeagwuani, C. C., Obeta, I. N., & Agunwamba, J. C. (2019). Stabilization of black cotton soil subgrade using sawdust ash and lime. Soils and Foundations, 59(1), 162–175. https://doi.org/10.1016/j.sandf.2018.10.004
  • Jamshidvand, S., Ardakani, A., & Kordnaeij, A. (2021). Effect of cement and zeolite on silty sand samples under freeze–thaw cycles. Road Materials and Pavement Design, 1–24. https://doi.org/10.1080/14680629.2021.1924238
  • Jia, L., Zhang, L., Guo, J., Yao, K., Lim, S. M., Li, B., & Xu, H. (2019). Evaluation on strength properties of lime-slag stabilized loess as pavement base material. Sustainability, 11(15), 4099. https://doi.org/10.3390/su11154099
  • Karakurt, C., Kurama, H., & Topcu, I. B. (2010). Utilization of natural zeolite in aerated concrete production. Cement and Concrete Composites, 32(1), 1–8. https://doi.org/10.1016/j.cemconcomp.2009.10.002
  • Khajeh, A., Ebrahimi, S. A., MolaAbasi, H., Jamshidi Chenari, R., & Payan, M. (2021). Effect of EPS beads in lightening a typical zeolite and cement-treated sand. Bulletin of Engineering Geology and the Environment, 80(11), 8615–8632. https://doi.org/10.1007/s10064-021-02458-1
  • Khajeh, A., Jamshidi Chenari, R., & Payan, M. (2019). A simple review of cemented non-conventional materials: Soil composites. Geotechnical and Geological Engineering, 1–22. https://doi.org/10.1007/s10706-019-01090-x
  • Khajeh, A., Jamshidi Chenari, R., & Payan, M. (2020). A review of the studies on soil-EPS composites: Beads and blocks. Geotechnical and Geological Engineering, 38, 3363–3383. https://doi.org/10.1007/s10706-020-01252-2
  • Khaksar Najafi, E., Jamshidi Chenari, R., Payan, M., & Arabani, M. (2021a). A sustainable landfill liner material: Clay-fly ash geopolymers. Bulletin of Engineering Geology and the Environment, 80(5), 4111–4124. https://doi.org/10.1007/s10064-021-02185-7
  • Khaksar Najafi, E., Jamshidi Chenari, R., Payan, M., & Arabani, M. (2021b). Compositional effects of clay–fly ash geopolymers on the sorption process of lead and zinc.. Journal of Environmental Quality, 50, 768–781. https://doi.org/10.1002/jeq2.20207
  • Khattab, S. A., Al-Mukhtar, M., & Fleureau, J.-M. (2007). Long-term stability characteristics of a lime-treated plastic soil. Journal of Materials in Civil Engineering, 19(4), 358–366. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:4(358)
  • Kordnaeij, A., Moayed, R. Z., & Soleimani, M. (2019). Small strain shear modulus equations for zeolite–cement grouted sands. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-019-00964-4
  • Ladd, R. S. (1977). Specimen preparation and cyclic stability of sands. Journal of the Geotechnical Engineering Division, 103(6), 535–547. https://doi.org/10.1061/AJGEB6.0000435
  • Mahabadi, A. A., Hajabbasi, M. A., Khademi, H., & Kazemian, H. (2007). Soil cadmium stabilization using an Iranian natural zeolite. Geoderma, 137(3-4), 388–393. https://doi.org/10.1016/j.geoderma.2006.08.032
  • Mehrpajouh, A., Ghasemzadeh, H., & Pishvaei, M. (2021). Effect of the glass transition temperature of acrylic polymers on physical and mechanical properties of kaolinite clay and sandy soil. Journal of Materials in Civil Engineering, 33(5), 04021062. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003651
  • Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Bo, M. W., & Darmawan, S. (2015). Laboratory evaluation of the use of cement-treated construction and demolition materials in pavement base and subbase applications. Journal of Materials in Civil Engineering, 27(6), 04014186. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001148
  • Mohanty, S. K., Pradhan, P. K., & Mohanty, C. R. (2017). Stabilization of expansive soil using industrial wastes. Geomechanics and Engineering, 12(1), 111–125. https://doi.org/10.12989/gae.2017.12.1.111
  • Mohsen Zadeh, P., Saghravani, S. F., & Asadollahfardi, G. (2019). Mechanical and durability properties of concrete containing zeolite mixed with meta kaolin and micro nano bubbles of water. Structural Concrete, 20(2), 786–797. https://doi.org/10.1002/suco.201800030
  • MolaAbasi, H., Khajeh, A., & Naderi Semsani, S. (2018). Effect of the ratio between porosity and SiO2 and Al2O3 on tensile strength of zeolite-cemented sands. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002197
  • MolaAbasi, H., Semsani, S. N., Saberian, M., Khajeh, A., Li, J., & Harandi, M. (2020). Evaluation of the long-term performance of stabilized sandy soil using binary mixtures: A micro-and macro-level approach. Journal of Cleaner Production, 122209. https://doi.org/10.1016/j.jclepro.2020.122209
  • Muthukkumaran, K., & Selvan, S. S. (2020). Stabilization of montmorillonite-rich bentonite clay using neem leaves ash. International Journal of Geosynthetics and Ground Engineering, 6(2), 1–7. https://doi.org/10.1007/s40891-020-0194-6
  • Rajabi, A. M., & Ardakani, S. B. (2020). Effects of natural-zeolite additive on mechanical and physicochemical properties of clayey soils. Journal of Materials in Civil Engineering, 32(10), 04020306. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003336
  • Rivera, J. F., Orobio, A., Cristelo, N., & Mejía de Gutiérrez, R. (2020). Fly ash-based geopolymer as A4 type soil stabiliser. Transportation Geotechnics, 25(February), 100409. https://doi.org/10.1016/j.trgeo.2020.100409
  • Salimi, M., Dordsheykhtorkamani, A., Afrasiabian, A., & Khajeh, A. (2021). Incorporation of volcanic ash for enhanced treatment of a cement-stabilized clayey soil. Journal of Materials in Civil Engineering, 33(2), 04020465. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003571
  • Salour, F., & Erlingsson, S. (2015). Resilient modulus modelling of unsaturated subgrade soils: Laboratory investigation of silty sand subgrade. Road Materials and Pavement Design, 16(3), 553–568. https://doi.org/10.1080/14680629.2015.1021107
  • Shirmohammadi, S., Ghaffarpour Jahromi, S., Payan, M., & Senetakis, K. (2021). Effect of lime stabilization and partial clinoptilolite zeolite replacement on the behavior of a silt-sized low-plasticity soil subjected to freezing–thawing cycles. Coatings, 11(8), 994. https://doi.org/10.3390/coatings11080994
  • Sivapullaiah, P. V., Sridharan, A., & Bhaskar Raju, K. V. (2000). Role of amount and type of clay in the lime stabilization of soils. Proceedings of the Institution of Civil Engineers-Ground Improvement, 4(1), 37–45. https://doi.org/10.1680/grim.2000.4.1.37
  • Soltani, A., Deng, A., Taheri, A., & Mirzababaei, M. (2018). Rubber powder–polymer combined stabilization of South Australian expansive soils. Geosynthetics International, 25(3), 304–321. https://doi.org/10.1680/jgein.18.00009
  • Ta’negonbadi, B., & Noorzad, R. (2018). Physical and geotechnical long-term properties of lignosulfonate-stabilized clay: An experimental investigation. Transportation Geotechnics, 17, 41–50. https://doi.org/10.1016/j.trgeo.2018.09.001
  • Tran, Y. T., Lee, J., Kumar, P., Kim, K.-H., & Lee, S. S. (2019). Natural zeolite and its application in concrete composite production. Composites Part B: Engineering, 165, 354–364. https://doi.org/10.1016/j.compositesb.2018.12.084
  • Turkoz, M., Savas, H., Acaz, A., & Tosun, H. (2014). The effect of magnesium chloride solution on the engineering properties of clay soil with expansive and dispersive characteristics. Applied Clay Science, 101, 1–9. https://doi.org/10.1016/j.clay.2014.08.007
  • USEPA. (1983). Process design manual: Land application of municipal sludge. EPA 625/1 83 016. Municipal Environmental Research Lab.
  • Vakili, A. H., Ghasemi, J., bin Selamat, M. R., Salimi, M., & Farhadi, M. S. (2018). Internal erosional behaviour of dispersive clay stabilized with lignosulfonate and reinforced with polypropylene fiber. Construction and Building Materials, 193, 405–415. https://doi.org/10.1016/j.conbuildmat.2018.10.213
  • Vitale, E., Deneele, D., Russo, G., & Ouvrard, G. (2016). Short-term effects on physical properties of lime treated kaolin. Applied Clay Science, 132-133, 223–231. https://doi.org/10.1016/j.clay.2016.04.025
  • Wang, Y., Guo, P., Li, X., Lin, H., Liu, Y., & Yuan, H. (2019). Behavior of fiber-reinforced and lime-stabilized clayey soil in triaxial tests. Applied Sciences, 9(5), 900. https://doi.org/10.3390/app9050900
  • Wong, L. S., Mousavi, S., Sobhani, S., Kong, S. Y., Birima, A. H., & Pauzi, N. I. M. (2016). Comparative measurement of compaction impact of clay stabilized with cement, peat ash and silica sand. Measurement, 94, 498–504. https://doi.org/10.1016/j.measurement.2016.08.029
  • Yadav, A. K., Gaurav, K., Kishor, R., & Suman, S. K. (2017). Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. International Journal of Pavement Research and Technology, 10(3), 254–261. https://doi.org/10.1016/j.ijprt.2017.02.001
  • Zhang, F., Pei, X., & Yan, X. (2018). Physicochemical and mechanical properties of lime-treated loess. Geotechnical and Geological Engineering, 36(1), 685–696. https://doi.org/10.1007/s10706-017-0341-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.