193
Views
1
CrossRef citations to date
0
Altmetric
Scientific Note

Microstructural behaviour of quarry fines stabilised with fly ash-based binder

Pages 1389-1402 | Received 30 Jan 2021, Accepted 16 Dec 2021, Published online: 25 Apr 2022

References

  • Abdulmatin, A., Tangchirapat, W., & Jaturapitakkul, C. (2018). An investigation of bottom ash as a pozzolanic material. Construction and Building Materials, 186, 155–162. https://doi.org/10.1016/j.conbuildmat.2018.07.101
  • Al-Swaidani, A., Hammoud, I., & Meziab, A. (2016). Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 714–725. https://doi.org/10.1016/j.jrmge.2016.04.002
  • Allwood, J. M., Cullen, J. M., & Milford, R. (2010). Options for achieving a 50% cut in industrial carbon emissions by 2050. Environmental Science & Technology, 44(6), 1888–1894. https://doi.org/10.1021/es902909k
  • Aoki, Y., Sri Ravindrarajah, R., & Khabbaz, H. (2012). Properties of pervious concrete containing fly ash. Road Materials and Pavement Design, 13(1), 1–11. https://doi.org/10.1080/14680629.2011.651834
  • Arulrajah, A., Mohammadinia, A., D’Amico, A., & Horpibulsukd, S. (2017). Cement kiln dust and fly ash blends as an alternative binder for the stabilization of demolition aggregates. Construction and Building Materials, 145, 218–225. https://doi.org/10.1016/j.conbuildmat.2017.04.007
  • Baghabra Al-Amoudi, O., Al-Homidy, A., Maslehuddin, M., & Saleh, T. (2017). Method and mechanisms of soil stabilization using electric arc furnace dust. Scientific Reports, 7, 46676.
  • Beckett, C., & Ciancio, D. (2014). Effect of compaction water content on the strength of cement stabilized rammed earth materials. Canadian Geotechnical Journal, 51(5), 583–590. https://doi.org/10.1139/cgj-2013-0339
  • Caro, S., Castillo, D., Darabi, M., & Masad, E. (2018). Influence of different sources of microstructural heterogeneity on the degradation of asphalt mixtures. International Journal of Pavement Engineering, 19(1), 9–23. https://doi.org/10.1080/10298436.2016.1149839
  • Cetin, B., Aydilek, A. H., Guney, Y. (2010). Stabilization of recycled base materials with high carbon fly ash. Resources, Conservation and Recycling, 54(11), 878–892. https://doi.org/10.1016/j.resconrec.2010.01.007
  • Dimter, S., Rukavina, T., & Dragćević, V. (2011). Strength properties of fly ash stabilized mixes. Road Materials and Pavement Design, 12(3), 687–697. https://doi.org/10.1080/14680629.2011.9695266
  • Finnsementti. (2020). Finnsementti environmental report 2020 (In Finnish, Finnsementti ympäristöraportti 2020). Accessible on https://finnsementti.fi/wp-content/uploads/Finnsementti_ymparistoraportti_2020.pdf
  • Ferone, C., Colangelo, F., Messina, F., Lucolano, F., Liguori, B., & Cioffi, R. (2013). Coal combustion wastes reuse in low energy artificial aggregates manufacturing. Materials, 6(11), 5000–5015. https://doi.org/10.3390/ma6115000
  • Frías, M., Sanchez de Rojas, M. I., García, R., Juan Valdés, A., & Medina, C. (2012). Effect of activated coal mining wastes on the properties of blended cement. Cement & Concrete Composites, 34(5), 678–683. https://doi.org/10.1016/j.cemconcomp.2012.02.006
  • Horpibulsuk, S., Rachan, R., & Raksachon, Y. (2009). Role of fly ash on strength and microstructure development in blended cement stabilized silty clay. Soils and Foundations, 49(1), 85–98. https://doi.org/10.3208/sandf.49.85
  • Hou, Y., Ji, X., Zou, L., Liu, S., & Su, X. (2016). Performance of cement-stabilised crushed brick aggregates in asphalt pavement base and subbase applications. Road Materials and Pavement Design, 17(1), 120–135. https://doi.org/10.1080/14680629.2015.1064466
  • InfraRYL. (2010). Infrarakentamisen yleiset laatuvaatimukset Osa 1 Väylät ja alueet. Rakennustieto Oy. ISBN 978-951-682-958-9.
  • Jamsawang, P., Charoensil, S., Namjan, T., Jongpradist, P., & Likitlersuang, S. (2021). Mechanical and microstructural properties of dredged sediments treated with cement and fly ash for use as road materials. Road Materials and Pavement Design, 22(11), 2498–2522.
  • Jayaranjan, M. L. D., van Hullebusch, E. D., & Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottom ash and fly ash. Reviews in Environmental Science and Biotechnology, 13(4), 467–486. https://doi.org/10.1007/s11157-014-9336-4
  • Juuti, E. (2020). Applicability of waste foundry sand as a component of layer stabilized aggregate and facilitation of reuse [in Finnish: Valimohiekan soveltuminen osaksi kerrosstabiloinnin runkoainetta ja käytön edistäminen] [Master’s thesis]. Aalto University, Espoo, Finland, 74+11 pages. https://aaltodoc.aalto.fi/bitstream/handle/123456789/43539/master_Juuti_Eero_2020.pdf?sequence=1&isAllowed=y
  • Kang, X., Kang, G.-C., Chang, K.-T., & Ge, L. (2015). Chemically stabilized soft clays for road-base construction. Journal of Materials in Civil Engineering, 27(7), 04014199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001156
  • Karim, R., Zain, M., Jamil, M., Lai, F., & Islam, N. (2011). Use of wastes in construction industries as an energy saving approach. Energy Procedia, 12, 915–919. https://doi.org/10.1016/j.egypro.2011.10.120
  • Kuula, P., Leppänen, M., Kolisoja, P., Korkiala-Tanttu, L., Sorvari, J., & Gustavsson, H. (2018). In P. Lahtinen & V. Raasakka (Eds.), Proceedings of 10th international conference on the environmental and technical implications of construction with alternative materials (pp. 177–187). Suomen rakennusinsinöörien liitto RIL.
  • Lav, A., Lav, M., & Goktepe, B. (2006). Analysis and design of a stabilized fly ash as pavement base material. Fuel, 85(16), 2359–2370. https://doi.org/10.1016/j.fuel.2006.05.017
  • Liu, Y., Wang, Y., Li, D., & Yu, Q. (2019). Life cycle assessment for carbon dioxide emissions from freeway construction in mountainous area: Primary source, cut-off determination of system boundary resources. Resources, Conservation and Recycling, 140, 36–44. https://doi.org/10.1016/j.resconrec.2018.09.009
  • Lloret-Cabot, M. F. G. A., Fenton, G. A., & Hicks, M. A. (2014). On the estimation of scale of fluctuation in geostatistics. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 8(2), 129–140. https://doi.org/10.1080/17499518.2013.871189
  • Mohanty, S., Roy, N., Singh, S., & Sihag, P. (2021). Effect of industrial by-products on the strength of stabilized dispersive soil. International Journal of Geotechnical Engineering, 15(4), 405–417.
  • Niroshan, N., Yin, L., Sivakugan, N., & Veenstra, R. (2018). Relevance of SEM to long-term mechanical properties of cemented paste backfill. Geotechnical and Geological Engineering, 36(4), 2171–2187. https://doi.org/10.1007/s10706-018-0455-5
  • Popescu, R., Deodatis, G., & Nobahar, A. (2005). Effects of random heterogeneity of soil properties on bearing capacity. Probabilistic Engineering Mechanics, 20(4), 324–341. https://doi.org/10.1016/j.probengmech.2005.06.003
  • Ribeiro, D., Néri, R., & Cardosoa, R. (2016). Influence of water content in the UCS of soil-cement mixtures for different cement dosages. Procedia Engineering, 143, 59–66. https://doi.org/10.1016/j.proeng.2016.06.008
  • Shanks, W., Dunant Michał, C. F., Drewniok, P., Lupton, R. C., Serrenho Julian, A., & Allwood, M. (2019). How much cement can we do without? Lessons from cement material flows in the UK. Resources, Conservation and Recycling, 141, 441–454. https://doi.org/10.1016/j.resconrec.2018.11.002
  • Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D’Agosto, M., Dimitriu, D., Figueroa Meza, M. J., Fulton, L., Kobayashi, S., Lah, A., McKinnon, O., Newman, P., Ouyang, M., Schauer, J. J., Sperling, D., & Tiwari, G. (2014). Transport. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, D. Von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth Assessment report of the intergovernmental panel on Climate Change. Cambridge University Press.
  • Singh, N., Mithulraj, M., & Arya, S. (2018). Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: A review. Resources, Conservation and Recycling, 138, 257–271. https://doi.org/10.1016/j.resconrec.2018.07.025
  • Solanki, P., Khoury, N., & Zaman, M. (2007). Engineering behavior and microstructure of soil stabilized with cement kiln dust. Soil Improvement. GSP, 172. https://ascelibrary.org/doi/abs/10. 1061/40916(235)6
  • Solanki, P., & Zaman, M. (2012). Microstructural and mineralogical characterization of clay stabilized using calcium-based stabilizers. In V. Kazmiruk (Ed.), Scanning Electron Microscopy. ISBN: 978-953-51-0092-8. https://doi.org/10.5772/34176
  • Taslimi, M., Afrakoti, P., Choobbasti, J., Ghadakpour, M., & Soleimani, S. (2020). Investigation of the effect of the coal wastes on the mechanical properties of the cement-treated sandy soil. Construction and Building Materials, 239, 117848. https://doi.org/10.1016/j.conbuildmat.2019.117848
  • Terzić, A., Pavlović, L., & Miličić, L. (2013). Evaluation of lignite fly ash for utilization as component in construction materials. International Journal of Coal Preparation and Utilization, 33(4), 159–180. https://doi.org/10.1080/19392699.2013.776960
  • Vichan, S., Rachan, R., & Horpibulsuk, S. (2013). Strength and microstructure development in Bangkok clay stabilized with calcium carbide residue and biomass ash. ScienceAsia, 39(2), 186–193. https://doi.org/10.2306/scienceasia1513-1874.2013.39.186
  • Vilenius, M. (2019). Technical properties of waste foundry sand and its use in earth construction [in Finnish: Valimohiekan tekniset ominaisuudet ja uusiokäyttö maarakentamisessa] [Master’s thesis]. Aalto University, Espoo, Finland, 71 + 33 pages. https://aaltodoc.aalto.fi/bitstream/handle/123456789/40951/master_Vilenius_Mikko_2019.pdf?sequence=1&isAllowed=y
  • World Business Council for Sustainable Development. (2018). Cement technology roadmap shows how the path to achieve CO2 reductions up to 24% by 2050. [WWW Document]. https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/News/Cement-technology-roadmap-shows-how-the-path-to-achieve-CO2-reductions-up-to-24-by-2050
  • Zhang, Y., Korkiala-Tanttu, L., & Borén, M. (2019). Assessment for sustainable use of quarry fines as pavement construction materials: Part II-stabilization and characterization of quarry fine materials. Materials, 12(15), 2450. https://doi.org/10.3390/ma12152450
  • Zhang, Y., Korkiala-Tanttu, L. K., Gustavsson, H., & Miksic, A. (2019). Assessment for sustainable use of quarry fines as pavement construction materials: Part I—description of basic quarry fine properties. Materials, 12(8), 1209. https://doi.org/10.3390/ma12081209

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.