327
Views
0
CrossRef citations to date
0
Altmetric
Scientific Papers

Influence of alternative rice husk ash filler on bitumen emulsion-based recycled asphalt

ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 1507-1521 | Received 25 Jan 2021, Accepted 18 May 2022, Published online: 07 Jun 2022

References

  • Al-Hdabi, A. (2016). Laboratory investigation on the properties of asphalt concrete mixture with rice husk ash as filler. Construction and Building Materials, 126, 544–551. https://www.sciencedirect.com/science/article/pii/S0950061816315100. https://doi.org/10.1016/j.conbuildmat.2016.09.070
  • Ameli, A., Babagoli, R., Norouzi, N., Jalali, F., & Mamaghani, F. (2019). Laboratory evaluation of the effect of coal waste ash (cwa) and rice husk ash (rha) on performance of asphalt mastics and stone matrix asphalt (sma) mixture. Construction and Building Materials, 236(10), 117557. https://doi.org/10.1016/j.conbuildmat.2019.117557
  • Arabani, M., & Tahami, S. A. (2017). Assessment of mechanical properties of rice husk ash modified asphalt mixture. Construction and Building Materials, 149, 350–358. https://www.sciencedirect.com/science/article/pii/S0950061817310115. https://doi.org/10.1016/j.conbuildmat.2017.05.127
  • Castorena, C., Pape, S., & Mooney, C. (2016). Blending measurements in mixtures with reclaimed asphalt: Use of scanning electron microscopy with x-ray analysis. Transportation Research Record, 2574(1), 57–63. https://doi.org/10.3141/2574-06
  • Chai, C., Cheng, Y.-C., Zhang, Y., Chen, Y., & Zhu, B. (2020). Experimental study on the performance decay of permeable asphalt mixture in seasonally frozen regions under freeze-thaw cycles. Sustainability, 12(7), 2966. https://doi.org/10.3390/su12072966
  • Chen, Z., Qian, M., Liu, C., Xue, B., Yu, L., Zhu, Y., & Wang, X. (2021). Surface modification of rice husk ash by ethanol-assisted milling to reinforce the properties of natural rubber/butadiene rubber composites. Chemical Research in Chinese Universities, 37(3), 757–762. https://doi.org/10.1007/s40242-021-0341-1
  • Dong, W., Xie, L., & Pan, P. (2018). A comparative study on early-stage strength development and mechanical properties of cement emulsified asphalt mixture using brake pad waste. Construction and Building Materials, 184, 515–523. https://www.sciencedirect.com/science/article/pii/S0950061818316684. https://doi.org/10.1016/j.conbuildmat.2018.07.013
  • Falchetto, A. C., Moon, K. H., Wang, D., Riccardi, C., & Wistuba, M. P. (2018). Comparison of low-temperature fracture and strength properties of asphalt mixture obtained from idt and scb under different testing configurations. Road Materials and Pavement Design, 19(3), 591–604. https://doi.org/10.1080/14680629.2018.1418722
  • Fernandes, F. M., Fernandes, A., & Pais, J. (2017). Assessment of the density and moisture content of asphalt mixtures of road pavements. Construction and Building Materials, 154, 1216–1225. https://www.sciencedirect.com/science/article/pii/S095006181731262X. https://doi.org/10.1016/j.conbuildmat.2017.06.119
  • Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. a. M. (2010). Assessment of the effects of rice husk ash particle size on strength,: water permeability and workability of binary blended concrete. Construction and Building Materials, 24(11), 2145–2150. https://www.sciencedirect.com/science/article/pii/S0950061810001662. https://doi.org/10.1016/j.conbuildmat.2010.04.045
  • Gu, F., Chen, C., Yin, F., West, R., & Taylor, A. (2019). Development of a new cracking index for asphalt mixtures using indirect tensile creep and strength test. Construction and Building Materials, 225, 465–475. https://doi.org/10.1016/j.conbuildmat.2019.07.058
  • Han, Z., Sha, A., Tong, Z., Liu, Z., Gao, J., Zou, X., & Yuan, D. (2017). Study on the optimum rice husk ash content added in asphalt binder and its modification with bio-oil. Construction and Building Materials, 147, 776–789. https://www.sciencedirect.com/science/article/pii/S0950061817308784. https://doi.org/10.1016/j.conbuildmat.2017.05.004
  • Jamshidi, A., Mohd Hasan, M. R., & Lee, M. T. (2018). Comparative study on engineering properties and energy efficiency of asphalt mixes incorporating fly ash and cement. Construction and Building Materials, 168, 295–304. https://www.sciencedirect.com/science/article/pii/S0950061818303866. https://doi.org/10.1016/j.conbuildmat.2018.02.137
  • Le, H. T., & Ludwig, H.-M. (2020). Alkali silica reactivity of rice husk ash in cement paste. Construction and Building Materials, 243, 118145. https://www.sciencedirect.com/science/article/pii/S0950061820301501. https://doi.org/10.1016/j.conbuildmat.2020.118145
  • Ling, J., Wei, F., Chen, H., Zhao, H., Tian, Y., & Han, B. (2020). Accelerated pavement testing for rutting evaluation of hot-mix asphalt overlay under high tire pressure. Journal of Transportation Engineering, Part B: Pavements, 146(2), 04020009. https://doi.org/10.1061/JPEODX.0000157
  • Liu, K., Huang, M., Wang, F., Zhang, X., Fu, C., & Xu, P. (2022). Interlaminar stability analysis and evaluation of the asphalt pavement with heating cables based on shear fatigue test. Road Materials and Pavement Design, 1–22. https://doi.org/10.1080/14680629.2022.2052941.
  • Liu, Y., Apeagyei, A., Ahmad, N., Grenfell, J., & Airey, G. (2014). Examination of moisture sensitivity of aggregate–bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests. International Journal of Pavement Engineering, 15(7), 657–670. https://doi.org/10.1080/10298436.2013.855312
  • Liu, Y., Zhang, Z., Tan, L., Xu, Y., Wang, C., Liu, P., Yu, H., & Oeser, M. (2020). Laboratory evaluation of emulsified asphalt reinforced with glass fiber treated with different methods. Journal of Cleaner Production, 274(20), 123116. https://www.sciencedirect.com/science/article/pii/S0959652620331619. https://doi.org/10.1016/j.jclepro.2020.123116
  • Long, Z., Tang, X., Ding, Y., Miljković, M., Khanal, A., Ma, W., You, L., & Xu, F. (2022). Influence of sea salt on the interfacial adhesion of bitumen–aggregate systems by molecular dynamics simulation. Construction and Building Materials, 336(20), 127471. https://doi.org/10.1016/j.conbuildmat.2022.127471
  • Long, Z., Tang, X., Guo, N., Ding, Y., Ma, W., You, L., & Xu, F. (2022). Atomistic-scale investigation of self-healing mechanism in nano-silica modified asphalt through molecular dynamics simulation. Journal of Infrastructure Preservation and Resilience, 3(1), 1–24. https://doi.org/10.1186/s43065-022-00049-2
  • Long, Z., You, L., Tang, X., Ma, W., Ding, Y., & Xu, F. (2020). Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using molecular dynamics simulation. Construction and Building Materials, 255(20), 119354. https://doi.org/10.1016/j.conbuildmat.2020.119354
  • Long, Z., Zhou, S., Jiang, S., Ma, W., Ding, Y., You, L., Tang, X., & Xu, F. (2021). Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation. Journal of Molecular Modeling, 27(3), 81. https://www.ncbi.nlm.nih.gov/pubmed/33575881. https://doi.org/10.1007/s00894-021-04697-1
  • Luo, D., Wang, Y., & Niu, D. (2020). Evaluation of the performance degradation of hybrid steel-polypropylene fiber reinforced concrete under freezing-thawing conditions. Advances in Civil Engineering, 2020, 1–21. https://doi.org/10.1155/2020/8863047
  • Lv, Q., Huang, W., Sadek, H., Xiao, F., & Yan, C. (2019). Investigation of the rutting performance of various modified asphalt mixtures using the hamburg wheel-tracking device test and multiple stress creep recovery test. Construction and Building Materials, 206, 62–70. https://www.sciencedirect.com/science/article/pii/S0950061819303009. https://doi.org/10.1016/j.conbuildmat.2019.02.015
  • Ma, W., West, R., Tran, N., Diefenderfer, B., & Chen, C. (2018). Effects of mineral additives on cold recycled foamed asphalt mixtures cured in laboratory and field conditions. Transportation Research Record: Journal of the Transportation Research Board, 2672(26), 036119811879327. https://doi.org/10.1177/0361198118793275
  • Man, J., Yan, K., Miao, Y., Liu, Y., Yang, X., Diab, A., & You, L. (2021). 3D spectral element model with a space-decoupling technique for the response of transversely isotropic pavements to moving vehicular loading. Road Materials and Pavement Design, 1–25. https://doi.org/10.1080/14680629.2021.1986121.
  • Miljković, M., Graziani, A., & Mignini, C. (2022). Interphase relations in the characterisation of bitumen emulsion-cement composites. In H. Di Benedetto, H. Baaj, E. Chailleux, G. Tebaldi, C. Sauzéat, & S. Mangiafico (Eds.), Proceedings of the RILEM International symposium on bituminous materials (pp. 1127–1133). Springer International Publishing.
  • Miljković, M., Poulikakos, L., Piemontese, F., Shakoorioskooie, M., & Lura, P. (2019). Mechanical behaviour of bitumen emulsion-cement composites across the structural transition of the co-binder system. Construction and Building Materials, 215, 217–232. https://www.sciencedirect.com/science/article/pii/S095006181931058X. https://doi.org/10.1016/j.conbuildmat.2019.04.169
  • Miljković, M., & Radenberg, M. (2014). Effect of compaction energy on physical and mechanical performance of bitumen emulsion mortar. Materials and Structures, 49, 193–205. https://doi.org/10.1617/s11527-014-0488-z
  • Miljković, M., Radenberg, M., Fang, X., & Lura, P. (2017). Influence of emulsifier content on cement hydration and mechanical performance of bitumen emulsion mortar. Materials and Structures, 50(3), 185. https://doi.org/10.1617/s11527-017-1052-4.
  • Modarres, A., Rahimzadeh, M., & Zarrabi, M. (2014). Field investigation of pavement rehabilitation utilizing cold in-place recycling. Resources, Conservation and Recycling, 83, 112–120. https://doi.org/10.1016/j.resconrec.2013.12.011
  • Mohd Amin, Z., Putra Jaya, R., Muhamad Nor, M., & Ahmad, Z. (2013). Properties of mortar containing rice husk ash at different temperature and exposed to aggressive environment. Advanced Materials Research, 620, 87–93. https://doi.org/10.4028/www.scientific.net/AMR.620.87
  • Oldham, D., Mallick, R., & Fini, E. (2020). Reducing susceptibility to moisture damage in asphalt pavements using polyethylene terephthalate and sodium montmorillonite clay. Construction and Building Materials, 269, 121302. https://doi.org/10.1016/j.conbuildmat.2020.121302
  • Pi, Y., Huang, Z., Pi, Y., Li, G., & Li, Y. (2019). Composition design and performance evaluation of emulsified asphalt cold recycled mixtures. Materials, 12(17), 2682. https://doi.org/10.3390/ma12172682
  • Rahman, M. T., Mohajerani, A., & Giustozzi, F. (2020). Recycling of waste materials for asphalt concrete and bitumen: A review. Materials, 13(7), 1495. https://doi.org/10.3390/ma13071495.
  • Sargın, Ş, Saltan, M., Morova, N., Serin, S., & Terzi, S. (2013). Evaluation of rice husk ash as filler in hot mix asphalt concrete. Construction and Building Materials, 48, 390–397. https://www.sciencedirect.com/science/article/pii/S0950061813005473. https://doi.org/10.1016/j.conbuildmat.2013.06.029
  • Yan, K., Li, L., Zheng, K., & Ge, D. (2019). Research on properties of bitumen mortar containing municipal solid waste incineration fly ash. Construction and Building Materials, 218, 657–666. https://www.sciencedirect.com/science/article/pii/S0950061819313303. https://doi.org/10.1016/j.conbuildmat.2019.05.151
  • Yang, W., Ouyang, J., Meng, Y., Tang, T., Chen, J., & Han, B. (2020). Effect of superplasticizer and wetting agent on volumetric and mechanical properties of cold recycled mixture with asphalt emulsion. Advances in Materials Science and Engineering, 2020, 1–11. https://doi.org/10.1155/2020/6251653
  • You, L., Dai, Q., You, Z., Zhou, X., & Washko, S. (2020). Stability and rheology of asphalt-emulsion under varying acidic and alkaline levels. Journal of Cleaner Production, 256(20), 120417. https://doi.org/10.1016/j.jclepro.2020.120417
  • You, L., Jin, D., Guo, S., Wang, J., Dai, Q., & You, Z. (2021). Leaching evaluation and performance assessments of asphalt mixtures with recycled cathode ray tube glass: A preliminary study. Journal of Cleaner Production, 279, 123716. https://doi.org/10.1016/j.jclepro.2020.123716
  • You, L., You, Z., Dai, Q., Xie, X., Washko, S., & Gao, J. (2019). Investigation of adhesion and interface bond strength for pavements underlying chip-seal: Effect of asphalt-aggregate combinations and freeze-thaw cycles on chip-seal. Construction and Building Materials, 203, 322–330. https://doi.org/10.1016/j.conbuildmat.2019.01.058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.