299
Views
2
CrossRef citations to date
0
Altmetric
Scientific Papers

Water accumulation and anti-sliding decay characteristics of freeway pavement at superelevation transitions

, , , &
Pages 1837-1852 | Received 23 Jan 2022, Accepted 21 Jul 2022, Published online: 02 Aug 2022

References

  • AASHTO. (2008). Guide for pavement friction. American Association of State Highway and Transportation Officials.
  • AASHTO T84. (2013). Standard method of test for specific gravity and absorption of fine aggregate. AASHTO.
  • AASHTO T85. (2014). Standard method of test for specific gravity and absorption of coarse aggregate. AASHTO.
  • ASTM E1911. (2019). Standard test method for measuring surface frictional properties using the dynamic friction tester. ASTM.
  • ASTM E965. (2019). Standard test method for measuring pavement macrotexture depth using a volumetric technique. ASTM.
  • Becchi, I., Caporali, E., Castelli, F., & Lorenzini, C. (2001). Field analysis of the water film dynamics on a road pavement. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26(10), 717–722. https://doi.org/10.1016/S1464-1917(01)95015-9
  • Bormashenko, E. (2015). Progress in understanding wetting transitions on rough surfaces. Advances in Colloid and Interface Science, 222, 92–103. https://doi.org/10.1016/j.cis.2014.02.009
  • Cafiso, S., Montella, A., Agostino, C. D., Mauriello, F., & Galante, F. (2021). Crash modification functions for pavement surface condition and geometric design indicators. Accident Analysis & Prevention, 149, 105887. https://doi.org/10.1016/j.aap.2020.105887
  • Charbeneau, R. J., Jeong, J., & Barrett, M. E. (2008). Highway drainage at superelevation transitions. Transportation Research Board.
  • Chu, L. J., & Fwa, T. F. (2018). Pavement skid resistance consideration in rain-related wet-weather speed limits determination. Road Materials and Pavement Design, 19(2), 334–352. https://doi.org/10.1080/14680629.2016.1261723
  • Dan, H. C., He, L. H., & Xu, B. (2017). Experimental investigation on skid resistance of asphalt pavement under various slippery conditions. International Journal of Pavement Engineering, 18(6), 485–499. https://doi.org/10.1080/10298436.2015.1095901
  • Do, M. T., Cerezo, V., Beautru, Y., & Kane, M. (2013). Modeling of the connection road surface microtexture/water depth/friction. Wear, 302(1-2), 1426–1435. https://doi.org/10.1016/j.wear.2013.01.031
  • Fwa, T. F., & Chu, L. (2021). The concept of pavement skid resistance state. Road Materials and Pavement Design, 22(1), 101–120. https://doi.org/10.1080/14680629.2019.1618366
  • Gallaway, B. M., Ivey, D., Ross, H. E., Ledbetter, W. B., Woods, D., & Schiller, R. (1975). Tentative pavement and geometric design criteria for minimizing hydroplaning. Federal Highway Administration.
  • Gunaratne, M., Lu, Q., Yang, J., Jayasooriya, W., Yassin, M., & Amarasiri, S. (2012). Hydroplaning on multi lane facilities. University of South Florida. https://rosap.ntl.bts.gov/view/dot/25504.
  • Hermange, C., Oger, G., Le Chenadec, Y., & Le Touze, D. (2019). A 3D SPH-FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground. Computer Methods in Applied Mechanics and Engineering, 355, 558–590. https://doi.org/10.1016/j.cma.2019.06.033
  • Huebner, R. S., Anderson, D. A., Warner, J. C., & Reed, J. R. (1997). PAVDRN: Computer model for predicting water film thickness and potential for hydroplaning on new and reconditioned pavements. Transportation Research Record: Journal of the Transportation Research Board, 1599(1), 128–131. https://doi.org/10.3141/1599-16
  • Jain, S., Das, A., & Venkatesh, K. S. (2021). Automated and contactless approaches for pavement surface texture measurement and analysis – A review. Construction and Building Materials, 301, 124235. https://doi.org/10.1016/j.conbuildmat.2021.124235
  • Jayasooriya, W., & Gunaratne, M. (2014). Evaluation of widely used hydroplaning risk prediction methods using florida's past crash data. Transportation Research Record: Journal of the Transportation Research Board, 2457(1), 140–150. https://doi.org/10.3141/2457-15
  • Jiao, Y., Liu, X., & Liu, K. (2018). Experimental study on wet skid resistance at different water-film thicknesses. Industrial Lubrication and Tribology, 70(9), 1737–1744. https://doi.org/10.1108/ILT-11-2017-0362
  • JTG 3450-2019. (2019). Field test methods of highway subgrade and pavement. Ministry of Transport of the People’s Republic of China.
  • JTG E20-2011. (2011). Standard test methods of bitumen and bituminous mixtures for highway engineering. China communication press.
  • JTG F40-2004. (2004). Technical specifications for construction of highway asphalt pavements. China communications press.
  • Kane, M., & Do, M. T. (2012). Kinematic wave approach to model water depth on road surfaces during and after rainfall events. International Journal of Pavement Engineering, 13(5), 385–394. https://doi.org/10.1080/10298436.2011.565768
  • Kane, M., Rado, Z., & Timmons, A. (2015). Exploring the texture-friction relationship: From texture empirical decomposition to pavement friction. International Journal of Pavement Engineering, 16(10), 919–928. https://doi.org/10.1080/10298436.2014.972956
  • Kogbara, R. B., Masad, E. A., Kassem, E., Scarpas, A., & Anupam, K. (2016). A state-of-the-art review of parameters influencing measurement and modeling of skid resistance of asphalt pavements. Construction and Building Materials, 114, 602–617. https://doi.org/10.1016/j.conbuildmat.2016.04.002
  • Kulakowski, B. T., & Harwood, D. W. (1990). Effect of water-film thickness on tire-pavement friction. ASTM, 1031, 50–60. https://doi.org/10.1520/STP23352S
  • Laganier, R. (1977). Skid resistance and water film thickness. Transportation Research Board, 624, 33–39.
  • Li, G. (2009). Preliminary study of the interference of surface objects and rainfall in overland flow resistance. CATENA, 78(2), 154–158. https://doi.org/10.1016/j.catena.2009.03.010
  • Li, P., & He, J. (2016). Geometric design safety estimation based on tire-road side friction. Transportation Research Part C: Emerging Technologies, 63, 114–125. https://doi.org/10.1016/j.trc.2015.12.009
  • Luo, W., Li, L., Wang, K. C. P., & Wei, C. (2020). Surface drainage evaluation of asphalt pavement using a new analytical water film depth model. Road Materials and Pavement Design, 21(7), 1985–2004. https://doi.org/10.1080/14680629.2019.1590220
  • Papadimitriou, E., Filtness, A., Theofilatos, A., Ziakopoulos, A., Quigley, C., & Yannis, G. (2019). Review and ranking of crash risk factors related to the road infrastructure. Accident Analysis & Prevention, 125, 85–97. https://doi.org/10.1016/j.aap.2019.01.002
  • Pattanaik, M. L., Choudhary, R., & Kumar, B. (2020). Prediction of frictional characteristics of bituminous mixes using group method of data handling and multigene symbolic genetic programming. Engineering with Computers, 36(4), 1875–1888. https://doi.org/10.1007/s00366-019-00802-4
  • Peng, J., Chu, L., & Fwa, T. F. (2021). Determination of safe vehicle speeds on wet horizontal pavement curves. Road Materials and Pavement Design, 22(11), 2641–2653. https://doi.org/10.1080/14680629.2020.1772350
  • Persson, B. N. J., Tartaglino, U., Albohr, O., & Tosatti, E. (2005). Rubber friction on wet and dry road surfaces: The sealing effect. Physical Review B, 71(3), 035428. https://doi.org/10.1103/PhysRevB.71.035428
  • Pourhassan, A., Gheni, A. A., & ElGawady, M. A. (2022). Water film depth prediction model for highly textured pavement surface drainage. Transportation Research Record: Journal of the Transportation Research Board, 2676(2), 100–117. https://doi.org/10.1177/03611981211036349
  • Russam, K., & Ross, N. (1968). The depth of rain water on road surfaces. Road Research Laboratory, Ministry of Transport Report No. LR, 236, 25.
  • Shen, E., Liu, G., Jia, Y., Dan, C., Abd Elbasit, M. A. M., Liu, C., Gu, J., & Shi, H. (2021). Effects of raindrop impact on the resistance characteristics of sheet flow. Journal of Hydrology, 592, 125767. https://doi.org/10.1016/j.jhydrol.2020.125767
  • Vincent, S., Sarthou, A., Caltagirone, J. P., Sonilhac, F., Fevrier, P., Mignot, C., & Pianet, G. (2011). Augmented lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns. Journal of Computational Physics, 230(4), 956–983. https://doi.org/10.1016/j.jcp.2010.10.006
  • Yu, M., You, Z. P., Wu, G. X., Kong, L. Y., Liu, C. C., & Gao, J. F. (2020). Measurement and modeling of skid resistance of asphalt pavement: A review. Construction and Building Materials, 260, 119878. https://doi.org/10.1016/j.conbuildmat.2020.119878

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.