541
Views
0
CrossRef citations to date
0
Altmetric
State of the Art

Hybrid neuro swarm intelligence paradigms for predicting the shear strength of sub-soil of heavy-haul freight corridor

, , , , , , & show all
Pages 1885-1916 | Received 06 Nov 2021, Accepted 21 Aug 2022, Published online: 22 Sep 2022

References

  • Adeyeri, J. B. (2014). Technology and practice in geotechnical engineering. IGI Global.
  • Alavi, A. H., & Gandomi, A. H. (2011). A robust data mining approach for formulation of geotechnical engineering systems. Engineering Computations, 28, 242–274. https://doi.org/10.1108/02644401111118132
  • Armaghani, D. J., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. A. (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences, 7, 5383–5396. https://doi.org/10.1007/s12517-013-1174-0
  • Asim, K. M., Awais, M., Martínez-Álvarez, F., & Iqbal, T. (2017). Seismic activity prediction using computational intelligence techniques in northern Pakistan. Acta Geophysica, 65(5), 919–930. https://doi.org/10.1007/s11600-017-0082-1
  • Asteris, P. G., & Mokos, V. G. (2020). Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 32(15), 11807–11826. https://doi.org/10.1007/s00521-019-04663-2
  • Bao, G. Q., & Mao, K. F. (2009). Particle swarm optimization algorithm with asymmetric time varying acceleration coefficients. 2009 IEEE International Conference on Robotics and Biomimetics, ROBIO 2009, pp. 2134–2139. https://doi.org/10.1109/ROBIO.2009.5420504
  • Bardhan, A., Samui, P., Ghosh, K., Gandomi, A. H., & Bhattacharyya, S. (2021). ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions. Applied Soft Computing, 110, Article no. 107595. https://doi.org/10.1016/j.asoc.2021.107595
  • Baykasoğlu, A., Güllü, H., Çanakçi, H., & Özbakir, L. (2008). Prediction of compressive and tensile strength of limestone via genetic programming. Expert Systems with Applications, 35(1-2), 111–123. https://doi.org/10.1016/j.eswa.2007.06.006
  • Bui, D. T., Hoang, N. D., & Nhu, V. H. (2019). A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: A case study at Trung Luong National Expressway Project (Vietnam). Engineering with Computers, 35(3), 955–965. https://doi.org/10.1007/s00366-018-0643-1
  • Bui, D. T., Nhu, V. H., & Hoang, N. D. (2018). Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and multi-layer perceptron neural network. Advanced Engineering Informatics, 38, 593–604. https://doi.org/10.1016/j.aei.2018.09.005
  • Chen, L., Zhang, W., Gao, X., Wang, L., Li, Z., Boehlke, T., & Perego, U. (2022). Design charts for reliability assessment of rock bedding slopes stability against bi-planar sliding: SRLEM and BPNN approaches. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 16(2), 360–375. https://doi.org/10.1080/17499518.2020.1815215
  • Chen, Li., Duan, L., Shi, Y., & Du, C. (2020). PSO_LSSVM prediction model and its MATLAB implementation. IOP Conference Series: Earth and Environmental Science, 428(1), Article no. 012089. https://doi.org/10.1088/1755-1315/428/1/012089
  • Chen, W., Panahi, M., & Pourghasemi, H. R. (2017). Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena, 157, 310–324. https://doi.org/10.1016/j.catena.2017.05.034
  • Cui, Z., Zeng, J., & Yin, Y. (2008). An improved PSO with time-varying accelerator coefficients. Proceedings of 8th International Conference on Intelligent Systems Design Applications (ISDA) 2008, 2, pp. 638–643. https://doi.org/10.1109/ISDA.2008.86
  • Das, B. M. (2021). Principles of geotechnical engineering. Cengage learning.
  • Das, B. M., & Sivakugan, N. (2016). Fundamentals of geotechnical engineering. Cengage Learning.
  • Das, S. K., & Basudhar, P. K. (2008). Prediction of residual friction angle of clays using artificial neural network. Engineering Geology, 100(3-4), 142–145. https://doi.org/10.1016/j.enggeo.2008.03.001
  • Deep, K., & Bansal, J. C. (2009). Mean particle swarm optimisation for function optimisation. International Journal of Computational Intelligence Studies, 1(1), 72–92. https://doi.org/10.1504/IJCISTUDIES.2009.025339
  • Fukuyama, Y., & Yoshida, H. (2001). A particle swarm optimization for reactive power and voltage control in electric power systems. Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546). IEEE, pp. 87–93.
  • Gholami, A., Bonakdari, H., Samui, P., Mohammadian, M., & Gharabaghi, B. (2019). Predicting stable alluvial channel profiles using emotional artificial neural networks. Applied Soft Computing, 78, 420–437. https://doi.org/10.1016/j.asoc.2019.03.003
  • Goh, A. T. C., Zhang, R. H., Wang, W., Wang, L., Liu, H. L., & Zhang, W. G. (2020). Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils. Acta Geotechnica, 15(5), 1259–1272. https://doi.org/10.1007/s11440-019-00843-5
  • Hasanipanah, M., Jahed Armaghani, D., Bakhshandeh Amnieh, H., Majid, M. Z. A., & Tahir, M. M. D. (2017). Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Computing and Applications, 28(S1), 1043–1050. https://doi.org/10.1007/s00521-016-2434-1
  • Hatanaka, M., & Uchida, A. (1996). Empirical correlation between penetration resistance and internal friction angle of sandy soils. Soils and Foundations, 36(4), 1–9. https://doi.org/10.3208/sandf.36.4_1
  • Hoang, N.-D., Bui, D. T., & Liao, K.-W. (2016). Groutability estimation of grouting processes with cement grouts using differential flower pollination optimized support vector machine. Applied Soft Computing, 45, 173–186. https://doi.org/10.1016/j.asoc.2016.04.031
  • Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1-3), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126
  • Hunt, R. E. (1986). Geotechnical engineering techniques and practices. McGraw-Hill.
  • Jokar, M. H., & Mirasi, S. (2018). Using adaptive neuro-fuzzy inference system for modeling unsaturated soils shear strength. Soft Computing, 22(13), 4493–4510. https://doi.org/10.1007/s00500-017-2778-1
  • Kaya, A. (2009). Residual and fully softened strength evaluation of soils using artificial neural networks. Geotechnical and Geological Engineering, 27(2), 281–288. https://doi.org/10.1007/s10706-008-9228-x
  • Kayadelen, C., Günaydin, O., Fener, M., Demir, A., & Özvan, A. (2009). Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Systems with Applications, 36(9), 11814–11826. https://doi.org/10.1016/j.eswa.2009.04.008
  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 – International Conference on Neural Networks. IEEE, pp. 1942–1948.
  • Khan, M. U. A., Shukla, S. K., & Raja, M. N. A. (2021). Soil–conduit interaction: An artificial intelligence application for reinforced concrete and corrugated steel conduits. Neural Computing and Applications, 33(21), 14861–14885. https://doi.org/10.1007/s00521-021-06125-0
  • Khan, M. U. A., Shukla, S. K., & Raja, M. N. A. (2022). Load-settlement response of a footing over buried conduit in a sloping terrain: A numerical experiment-based artificial intelligent approach. Soft Computing, 1–18. https://doi.org/10.1007/s00500-021-06628-x
  • Khanlari, G. R., Heidari, M., Momeni, A. A., & Abdilor, Y. (2012). Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Engineering Geology, 131–132, 11–18. https://doi.org/10.1016/j.enggeo.2011.12.006
  • Koopialipoor, M., Fallah, A., Armaghani, D. J., Azizi, A., & Mohamad, E. T. (2019). Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Engineering with Computers, 35(1), 243–256. https://doi.org/10.1007/s00366-018-0596-4
  • Le, L. T., Nguyen, H., Dou, J., & Zhou, J. (2019). A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning. Applied Sciences, 9(13), Article no. 2630. https://doi.org/10.3390/app9132630
  • Liou, S.-W., Wang, C.-M., & Huang, Y.-F. (2009). Integrative discovery of multifaceted sequence patterns by frame-relayed search and hybrid PSO-ANN. Journal of Universal Computer Science, 15(4), 742–764. https://doi.org/10.3217/jucs-015-04-0742
  • Ly, H.-B., Pham, B. T., Le, L. M., Le, T.-T., Le, V. M., & Asteris, P. G. (2021). Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Computing and Applications, 33(8), 3437–3458. https://doi.org/10.1007/s00521-020-05214-w
  • Moayedi, H., Bui, D. T., Anastasios, D., & Kalantar, B. (2019). Spotted hyena optimizer and ant lion optimization in predicting the shear strength of soil. Applied Sciences, 9(22), Article no. 4738. https://doi.org/10.3390/app9224738
  • Moayedi, H., Bui, D. T., Dounis, A., Foong, L. K., & Kalantar, B. (2019). Novel nature-inspired hybrids of neural computing for estimating soil shear strength. Applied Sciences, 9(21), Article no. 4643. https://doi.org/10.3390/app9214643
  • Moayedi, H., Gör, M., Khari, M., Foong, L. K., Bahiraei, M., & Bui, D. T. (2020). Hybridizing four wise neural-metaheuristic paradigms in predicting soil shear strength. Measurement, 156, Article no. 107576. https://doi.org/10.1016/j.measurement.2020.107576
  • Mohammadzadeh, S. D., Bolouri Bazaz, J., & Alavi, A. H. (2014). An evolutionary computational approach for formulation of compression index of fine-grained soils. Engineering Applications of Artificial Intelligence, 33, 58–68. https://doi.org/10.1016/j.engappai.2014.03.012
  • Momeni, E., Nazir, R., Armaghani, D. J., & Maizir, H. (2014). Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement, 57, 122–131. https://doi.org/10.1016/j.measurement.2014.08.007
  • Murlidhar, B. R., Kumar, D., Armaghani, D. J., Mohamad, E. T., Roy, B., & Pham, B. T. (2020). A novel intelligent ELM-BBO technique for predicting distance of mine blasting-induced flyrock. Natural Resources Research, 29(6), 4103–4120. https://doi.org/10.1007/s11053-020-09676-6
  • Pham, B. T., Son, L. H., Hoang, T. A., Nguyen, D. M., & Tien Bui, D. (2018). Prediction of shear strength of soft soil using machine learning methods. Catena, 166, 181–191. https://doi.org/10.1016/j.catena.2018.04.004
  • Raghuram, G., & Verma, A. (2019). Dedicated freight corridor: Current challenges. In World Conference on Transport Research-WCTR.
  • Raja, M. N. A., & Shukla, S. K. (2021a). Multivariate adaptive regression splines model for reinforced soil foundations. Geosynthetics International, 28(4), 368–390. https://doi.org/10.1680/jgein.20.00049
  • Raja, M. N. A., & Shukla, S. K. (2021b). Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique. Geotextiles and Geomembranes, 49(5), 1280–1293. https://doi.org/10.1016/j.geotexmem.2021.04.007
  • Raja, M. N. A., Shukla, S. K., & Khan, M. U. A. (2021). An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil. International Journal of Pavement Engineering, 1–17. https://doi.org/10.1080/10298436.2021.1904237
  • Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240–255. https://doi.org/10.1109/TEVC.2004.826071
  • Roy, B., & Singh, M. P. (2020). An empirical-based rainfall-runoff modelling using optimization technique. International Journal of River Basin Management, 18(1), 49–67. https://doi.org/10.1080/15715124.2019.1680557
  • Tang, Z., & Zhang, D. (2009). A modified particle swarm optimization with an adaptive acceleration coefficients. Procedings - 2009 Asia-Pacific Conference Information Processing (APCIP 2009) 2, pp. 330–332. https://doi.org/10.1109/APCIP.2009.217
  • Vanapalli, S. K., & Fredlund, D. G. (2000). Comparison of different procedures to predict unsaturated soil shear strength. Advances in Unsaturated Geotechnics, 195–209. https://doi.org/10.1061/40510(287)13
  • Wang, L., Wu, C., Tang, L., Zhang, W., Lacasse, S., Liu, H., & Gao, L. (2020). Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method. Acta Geotechnica, 15(11), 3135–3150. https://doi.org/10.1007/s11440-020-00962-4
  • Yagiz, S., Gokceoglu, C., Sezer, E., & Iplikci, S. (2009). Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Engineering Applications of Artificial Intelligence, 22(4-5), 808–814. https://doi.org/10.1016/j.engappai.2009.03.007
  • Zhang, R., Wu, C., Goh, A. T. C., Böhlke, T., & Zhang, W. (2021). Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning. Geoscience Frontiers, 12(1), 365–373. https://doi.org/10.1016/j.gsf.2020.03.003
  • Zhang, W., & Goh, A. T. C. (2016). Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geoscience Frontiers, 7(1), 45–52. https://doi.org/10.1016/j.gsf.2014.10.003
  • Zhang, W., Li, H., Li, Y., Liu, H., Chen, Y., & Ding, X. (2021). Application of deep learning algorithms in geotechnical engineering: A short critical review. Artificial Intelligence Review, 54, 5633–5673. https://doi.org/10.1007/s10462-021-09967-1
  • Zhang, W., Wu, C., Li, Y., Wang, L., & Samui, P. (2021). Assessment of pile drivability using random forest regression and multivariate adaptive regression splines. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 15(1), 27–40. https://doi.org/10.1080/17499518.2019.1674340
  • Zhang, W., Wu, C., Zhong, H., Li, Y., & Wang, L. (2021). Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geoscience Frontiers, 12(1), 469–477. https://doi.org/10.1016/j.gsf.2020.03.007
  • Zhang, W., Zhang, R., Wu, C., Goh, A. T. C., Lacasse, S., Liu, Z., & Liu, H. (2020). State-of-the-art review of soft computing applications in underground excavations. Geoscience Frontiers, 11(4), 1095–1106. https://doi.org/10.1016/j.gsf.2019.12.003
  • Zhang, W. G., & Goh, A. T. C. (2013). Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Computers and Geotechnics, 48, 82–95. https://doi.org/10.1016/j.compgeo.2012.09.016
  • Zhang, W. G., Li, H. R., Wu, C. Z., Li, Y. Q., Liu, Z. Q., & Liu, H. L. (2021). Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling. Underground Space, 6(4), 353–363. https://doi.org/10.1016/j.undsp.2019.12.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.