193
Views
0
CrossRef citations to date
0
Altmetric
Scientific Papers

Stochastic-based pavement rehabilitation model at the network level with prediction uncertainty considerations

Pages 2680-2698 | Received 09 Dec 2021, Accepted 27 Dec 2022, Published online: 04 Jan 2023

References

  • Abaza, K. A., & Murad, M. M. (2007). Dynamic probabilistic approach for a long-term pavement restoration program with added user cost. Transportation Research Record, 1990(1), 48–56. https://doi.org/10.3141/1990-06
  • Abaza, K., & Murad, M. (2009). Predicting flexible pavement remaining strength and overlay design thickness with stochastic modeling. Transportation Research Record, 2094(1), 62–70. https://doi.org/10.3141/2094-07
  • Abaza, K. A. (2007). Expected performance of pavement repair works in a global network optimization model. Journal of Infrastructure Systems, 13(2), 124–134. https://doi.org/10.1061/(ASCE)1076-0342(2007)13:2(124)
  • Abaza, K. A. (2017). Empirical Markovian-based models for rehabilitated pavement performance used in a life-cycle analysis approach. Structure and Infrastructure Engineering, 13(5), 625–636. https://doi.org/10.1080/15732479.2016.1187180
  • Abaza, K. A. (2021). Empirical-Markovian approach for estimating the flexible pavement structural capacity: Caltrans method as a case study. International Journal of Transportation Science and Technology, 10(2), 156–166. https://doi.org/10.1016/j.ijtst.2020.12.007
  • Abaza, K. A. (2022). Simplified exhaustive search approach for estimating the non-homogeneous transition probabilities for infrastructure asset management. Journal of Infrastructure Systems, 28(1), 04021048. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000660
  • Abed, A., Thom, N., & Neves, L. (2019). Probabilistic prediction of asphalt pavement performance. Road Materials and Pavement Design, 20(Suppl. 1), S247–S264. https://doi.org/10.1080/14680629.2019.1593229
  • Alaswadko, N., & Hwayyis, K. (2022). An approach to investigate the supplementary inconsistency between time series data for predicting road pavement performance models. International Journal of Pavement Engineering, 1–15. https://doi.org/10.1080/10298436.2022.2045017
  • Barua, L., & Zou, B. (2022). Planning maintenance and rehabilitation activities for airport pavements: A combined supervised machine learning and reinforcement learning approach. International Journal of Transportation Science and Technology, 11(2), 423–435. https://doi.org/10.1016/j.ijtst.2021.05.006
  • Costello, S. B., Ortiz-Garcia, J. J., & Snaith, M. S. (2016). Analytical tool for calculating transition probabilities for pavement performance prediction. Road Transport Res, 25(2), 30–39.
  • Fuentes, L., Camargo, R., Arellana, J., Velosa, C., & Martinez, G. (2021). Modelling pavement serviceability of urban roads using deterministic and probabilistic approaches. International Journal of Pavement Engineering, 22(1), 77–86. https://doi.org/10.1080/10298436.2019.1577422
  • Galvis Arce, O. D., & Zhang, Z. (2021). Skid resistance deterioration model at the network level using Markov chains. International Journal of Pavement Engineering, 22(1), 118–126. https://doi.org/10.1080/10298436.2019.1578882
  • Hafez, M., Ksaibati, K., & Atadero, R. (2021). Pavement maintenance practices of low-volume roads and potential enhancement: The regional experience of Colorado pavement management system. International Journal of Pavement Engineering, 22(6), 718–731. https://doi.org/10.1080/10298436.2019.1643021
  • Hu, A., Bai, Q., Chen, L., Meng, S., Li, Q., & Xu, Z. (2022). A review on empirical methods of pavement performance modeling. Construction and Building Materials, 342(Part B), 127968. https://doi.org/10.1016/j.conbuildmat.2022.127968.
  • Jorge, D., & Ferreira, A. (2012). Road network pavement maintenance optimization using the HDM-4 pavement performance prediction models. International Journal of Pavement Engineering, 13(1), 39–51. https://doi.org/10.1080/1029-8436.2011.563851
  • Justo-Silva, R., Ferreira, A., & Flintsch, G. (2021). Review on machine learning techniques for developing pavement performance prediction models. Sustainability, 13(9), 5248. https://doi.org/10.3390/su13095248
  • Khattak, M. J., Baladi, G. Y., Zhang, Z., & Ismail, S. (2008). Review of Louisiana’s pavement management system: Phase I. Transportation Research Record, 2084(1), 18–27. https://doi.org/10.3141/2084-03
  • Khavandi Khiavi, A., & Mohammadi, H. (2018). Multi-objective optimization in pavement management system using NSGA-II method. Journal of Transportation Engineering, Part B: Pavements, 144(2), 04018016. https://doi.org/10.1061/JPEODX.0000041
  • Kim, D. Y., Chi, S., & Kim, J. (2018). Selecting network-level project sections for sustainable pavement management in Texas. Sustainability, 10(3), 686. https://doi.org/10.3390/su10030686
  • Lethanh, N., & Adey, B. T. (2012). A hidden Markov model for modeling pavement deterioration under incomplete monitoring data. World Academy of Science, Engineering and Technology, 6(1), 46–53.
  • Lethanh, N., Kaito, K., & Kobayashi, K. (2015). Infrastructure deterioration prediction with a Poisson hidden Markov model on time series data. Journal of Infrastructure Systems, 21(3), 04014051. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000242
  • Li, Y., Cheetham, A., Zaghloul, S., Helali, K., & Bekheet, W. (2006). Enhancement of Arizona pavement management system for construction and maintenance activities. Transportation Research Record, 1974(1), 26–36. https://doi.org/10.1177/0361198106197400104
  • Mandiartha, P., Duffield, C. F., Thompson, R. G., & Wigan, M. R. (2012). A stochastic-based performance prediction model for road network pavement maintenance. Road & Transport Research: A Journal of Australian and New Zealand Research and Practice, 21(3), 34–52.
  • Mathew, B. S., & Isaac, K. P. (2014). Optimization of maintenance strategy for rural road network using genetic algorithm. International Journal of Pavement Engineering, 15(4), 352–360. https://doi.org/10.1080/10298436.2013.806807
  • Meidani, H., & Ghanem, R. (2015). Random Markov decision processes for sustainable infrastructure systems. Structure and Infrastructure Engineering, 11(5), 655–667. https://doi.org/10.1080/15732479.2014.893445
  • Miah, M., Oh, E., Chai, G., & Bell, P. (2020). An overview of the airport pavement management systems (APMS). International Journal of Pavement Research and Technology, 13(6), 581–590. https://doi.org/10.1007/s42947-020-6011-8
  • Peraka, N. S. P., & Biligiri, K. P. (2020). Pavement asset management systems and technologies: A review. Automation in Construction, 119, 103336. https://doi.org/10.1016/j.autcon.2020.103336
  • Pittenger, D., Gransberg, D. D., Zaman, M., & Riemer, C. (2012). Stochastic life-cycle cost analysis for pavement preservation treatments. Transportation Research Record: Journal of the Transportation Research Board, 2292(1), 45–51. https://doi.org/10.3141/2292-06
  • Pranav, S., Aggarwal, S., Yang, E. H., Sarkar, A. K., Singh, A. P., & Lahoti, M. (2020). Alternative materials for wearing course of concrete pavements: A critical review. Construction and Building Materials, 236, 117609. https://doi.org/10.1016/j.conbuildmat.2019.117609
  • Santos, J., Ferreira, A., & Flintsch, G. (2017). A multi-objective optimization-based pavement management decision-support system for enhancing pavement sustainability. Journal of Cleaner Production, 164, 1380–1393. https://doi.org/10.1016/j.jclepro.2017.07.027
  • Santos, J., Ferreira, A., & Flintsch, G. (2019). An adaptive hybrid genetic algorithm for Pavement management. International Journal of Pavement Engineering, 20(3), 266–286. https://doi.org/10.1080/10298436.2017.1293260
  • Sebaaly, P. E., Hand, A., Epps, J., & Bosch, C. (1996). Nevada’s approach to pavement management. Transportation Research Record, 1524(1), 109–117. https://doi.org/10.1177/0361198196152400113
  • Sholevar, N., Golroo, A., & Esfahani, S. R. (2022). Machine learning techniques for pavement condition evaluation. Automation in Construction, 136, 104190. https://doi.org/10.1016/j.autcon.2022.104190
  • Thomas, O., & Sobanjo, J. (2013). Comparison of Markov chain and semi-Markov models for crack deterioration on flexible pavements. Journal of Infrastructure Systems, 19(2), 186–195. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000112
  • Torres-Machí, C., Chamorro, A., Pellicer, E., Yepes, V., & Videla, C. (2015). Sustainable Pavement management: Integrating economic: Technical, and environmental aspects in decision making. Transportation Research Record, 2523(1), 56–63. https://doi.org/10.3141/2523-07
  • Vyas, V., Singh, A. P., & Srivastava, A. (2021a). Entropy-based fuzzy SWOT decision-making for condition assessment of airfield pavements. International Journal of Pavement Engineering, 22(10), 1226–1237. https://doi.org/10.1080/10298436.2019.1671590
  • Vyas, V., Singh, A. P., & Srivastava, A. (2021b). Prediction of asphalt pavement condition using FWD deflection basin parameters and artificial neural networks. Road Materials and Pavement Design, 22(12), 2748–2766. https://doi.org/10.1080/14680629.2020.1797855
  • Wang, F., Lee, C. C. B., & Gharaibeh, N. G. (2022). Network-level bridge deterioration prediction models that consider the effect of maintenance and rehabilitation. Journal of Infrastructure Systems, 28(1), 05021009. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000662
  • Xiao, F., Chen, X., Cheng, J., Yang, S., & Ma, Y. (2022). Establishment of probabilistic prediction models for pavement deterioration based on Bayesian neural network. International Journal of Pavement Engineering, 1–16. https://doi.org/10.1080/10298436.2022.2076854
  • Yamany, M. S., & Abraham, D. M. (2021). Hybrid approach to incorporate preventive maintenance effectiveness into probabilistic pavement performance models. Journal of Transport Engineering Part B Pavements, 147(1), 04020077. https://doi.org/10.1061/JPEODX.0000227
  • Yamany, M. S., Abraham, D. M., & Labi, S. (2021). Comparative analysis of Markovian methodologies for modeling infrastructure system performance. Journal of Infrastructure Systems, 27(2), 04021003. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000604
  • Yang, J., Lu, J., Gunaratne, M., & Dietrich, B. (2006). Modeling crack deterioration of flexible pavements: Comparison of recurrent Markov chains and artificial neural networks. Transportation Research Record: Journal of the Transportation Research Board, 1974(1), 18–25. https://doi.org/10.1177/0361198106197400103
  • Zhang, X., & Gao, H. (2012). Road maintenance optimization through a discrete-time semi-Markov decision process. Reliability Engineering and System Safety, 103, 110–119. https://doi.org/10.1016/j.ress.2012.03.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.